????
Current Path : C:/opt/pgsql/doc/postgresql/html/ |
Current File : C:/opt/pgsql/doc/postgresql/html/functions-matching.html |
<?xml version="1.0" encoding="UTF-8" standalone="no"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>9.7. Pattern Matching</title><link rel="stylesheet" type="text/css" href="stylesheet.css" /><link rev="made" href="pgsql-docs@lists.postgresql.org" /><meta name="generator" content="DocBook XSL Stylesheets Vsnapshot" /><link rel="prev" href="functions-bitstring.html" title="9.6. Bit String Functions and Operators" /><link rel="next" href="functions-formatting.html" title="9.8. Data Type Formatting Functions" /></head><body id="docContent" class="container-fluid col-10"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="5" align="center">9.7. Pattern Matching</th></tr><tr><td width="10%" align="left"><a accesskey="p" href="functions-bitstring.html" title="9.6. Bit String Functions and Operators">Prev</a> </td><td width="10%" align="left"><a accesskey="u" href="functions.html" title="Chapter 9. Functions and Operators">Up</a></td><th width="60%" align="center">Chapter 9. Functions and Operators</th><td width="10%" align="right"><a accesskey="h" href="index.html" title="PostgreSQL 16.3 Documentation">Home</a></td><td width="10%" align="right"> <a accesskey="n" href="functions-formatting.html" title="9.8. Data Type Formatting Functions">Next</a></td></tr></table><hr /></div><div class="sect1" id="FUNCTIONS-MATCHING"><div class="titlepage"><div><div><h2 class="title" style="clear: both">9.7. Pattern Matching <a href="#FUNCTIONS-MATCHING" class="id_link">#</a></h2></div></div></div><div class="toc"><dl class="toc"><dt><span class="sect2"><a href="functions-matching.html#FUNCTIONS-LIKE">9.7.1. <code class="function">LIKE</code></a></span></dt><dt><span class="sect2"><a href="functions-matching.html#FUNCTIONS-SIMILARTO-REGEXP">9.7.2. <code class="function">SIMILAR TO</code> Regular Expressions</a></span></dt><dt><span class="sect2"><a href="functions-matching.html#FUNCTIONS-POSIX-REGEXP">9.7.3. <acronym class="acronym">POSIX</acronym> Regular Expressions</a></span></dt></dl></div><a id="id-1.5.8.13.2" class="indexterm"></a><p> There are three separate approaches to pattern matching provided by <span class="productname">PostgreSQL</span>: the traditional <acronym class="acronym">SQL</acronym> <code class="function">LIKE</code> operator, the more recent <code class="function">SIMILAR TO</code> operator (added in SQL:1999), and <acronym class="acronym">POSIX</acronym>-style regular expressions. Aside from the basic <span class="quote">“<span class="quote">does this string match this pattern?</span>”</span> operators, functions are available to extract or replace matching substrings and to split a string at matching locations. </p><div class="tip"><h3 class="title">Tip</h3><p> If you have pattern matching needs that go beyond this, consider writing a user-defined function in Perl or Tcl. </p></div><div class="caution"><h3 class="title">Caution</h3><p> While most regular-expression searches can be executed very quickly, regular expressions can be contrived that take arbitrary amounts of time and memory to process. Be wary of accepting regular-expression search patterns from hostile sources. If you must do so, it is advisable to impose a statement timeout. </p><p> Searches using <code class="function">SIMILAR TO</code> patterns have the same security hazards, since <code class="function">SIMILAR TO</code> provides many of the same capabilities as <acronym class="acronym">POSIX</acronym>-style regular expressions. </p><p> <code class="function">LIKE</code> searches, being much simpler than the other two options, are safer to use with possibly-hostile pattern sources. </p></div><p> The pattern matching operators of all three kinds do not support nondeterministic collations. If required, apply a different collation to the expression to work around this limitation. </p><div class="sect2" id="FUNCTIONS-LIKE"><div class="titlepage"><div><div><h3 class="title">9.7.1. <code class="function">LIKE</code> <a href="#FUNCTIONS-LIKE" class="id_link">#</a></h3></div></div></div><a id="id-1.5.8.13.7.2" class="indexterm"></a><pre class="synopsis"> <em class="replaceable"><code>string</code></em> LIKE <em class="replaceable"><code>pattern</code></em> [<span class="optional">ESCAPE <em class="replaceable"><code>escape-character</code></em></span>] <em class="replaceable"><code>string</code></em> NOT LIKE <em class="replaceable"><code>pattern</code></em> [<span class="optional">ESCAPE <em class="replaceable"><code>escape-character</code></em></span>] </pre><p> The <code class="function">LIKE</code> expression returns true if the <em class="replaceable"><code>string</code></em> matches the supplied <em class="replaceable"><code>pattern</code></em>. (As expected, the <code class="function">NOT LIKE</code> expression returns false if <code class="function">LIKE</code> returns true, and vice versa. An equivalent expression is <code class="literal">NOT (<em class="replaceable"><code>string</code></em> LIKE <em class="replaceable"><code>pattern</code></em>)</code>.) </p><p> If <em class="replaceable"><code>pattern</code></em> does not contain percent signs or underscores, then the pattern only represents the string itself; in that case <code class="function">LIKE</code> acts like the equals operator. An underscore (<code class="literal">_</code>) in <em class="replaceable"><code>pattern</code></em> stands for (matches) any single character; a percent sign (<code class="literal">%</code>) matches any sequence of zero or more characters. </p><p> Some examples: </p><pre class="programlisting"> 'abc' LIKE 'abc' <em class="lineannotation"><span class="lineannotation">true</span></em> 'abc' LIKE 'a%' <em class="lineannotation"><span class="lineannotation">true</span></em> 'abc' LIKE '_b_' <em class="lineannotation"><span class="lineannotation">true</span></em> 'abc' LIKE 'c' <em class="lineannotation"><span class="lineannotation">false</span></em> </pre><p> </p><p> <code class="function">LIKE</code> pattern matching always covers the entire string. Therefore, if it's desired to match a sequence anywhere within a string, the pattern must start and end with a percent sign. </p><p> To match a literal underscore or percent sign without matching other characters, the respective character in <em class="replaceable"><code>pattern</code></em> must be preceded by the escape character. The default escape character is the backslash but a different one can be selected by using the <code class="literal">ESCAPE</code> clause. To match the escape character itself, write two escape characters. </p><div class="note"><h3 class="title">Note</h3><p> If you have <a class="xref" href="runtime-config-compatible.html#GUC-STANDARD-CONFORMING-STRINGS">standard_conforming_strings</a> turned off, any backslashes you write in literal string constants will need to be doubled. See <a class="xref" href="sql-syntax-lexical.html#SQL-SYNTAX-STRINGS" title="4.1.2.1. String Constants">Section 4.1.2.1</a> for more information. </p></div><p> It's also possible to select no escape character by writing <code class="literal">ESCAPE ''</code>. This effectively disables the escape mechanism, which makes it impossible to turn off the special meaning of underscore and percent signs in the pattern. </p><p> According to the SQL standard, omitting <code class="literal">ESCAPE</code> means there is no escape character (rather than defaulting to a backslash), and a zero-length <code class="literal">ESCAPE</code> value is disallowed. <span class="productname">PostgreSQL</span>'s behavior in this regard is therefore slightly nonstandard. </p><p> The key word <code class="token">ILIKE</code> can be used instead of <code class="token">LIKE</code> to make the match case-insensitive according to the active locale. This is not in the <acronym class="acronym">SQL</acronym> standard but is a <span class="productname">PostgreSQL</span> extension. </p><p> The operator <code class="literal">~~</code> is equivalent to <code class="function">LIKE</code>, and <code class="literal">~~*</code> corresponds to <code class="function">ILIKE</code>. There are also <code class="literal">!~~</code> and <code class="literal">!~~*</code> operators that represent <code class="function">NOT LIKE</code> and <code class="function">NOT ILIKE</code>, respectively. All of these operators are <span class="productname">PostgreSQL</span>-specific. You may see these operator names in <code class="command">EXPLAIN</code> output and similar places, since the parser actually translates <code class="function">LIKE</code> et al. to these operators. </p><p> The phrases <code class="function">LIKE</code>, <code class="function">ILIKE</code>, <code class="function">NOT LIKE</code>, and <code class="function">NOT ILIKE</code> are generally treated as operators in <span class="productname">PostgreSQL</span> syntax; for example they can be used in <em class="replaceable"><code>expression</code></em> <em class="replaceable"><code>operator</code></em> ANY (<em class="replaceable"><code>subquery</code></em>) constructs, although an <code class="literal">ESCAPE</code> clause cannot be included there. In some obscure cases it may be necessary to use the underlying operator names instead. </p><p> Also see the starts-with operator <code class="literal">^@</code> and the corresponding <code class="function">starts_with()</code> function, which are useful in cases where simply matching the beginning of a string is needed. </p></div><div class="sect2" id="FUNCTIONS-SIMILARTO-REGEXP"><div class="titlepage"><div><div><h3 class="title">9.7.2. <code class="function">SIMILAR TO</code> Regular Expressions <a href="#FUNCTIONS-SIMILARTO-REGEXP" class="id_link">#</a></h3></div></div></div><a id="id-1.5.8.13.8.2" class="indexterm"></a><a id="id-1.5.8.13.8.3" class="indexterm"></a><a id="id-1.5.8.13.8.4" class="indexterm"></a><pre class="synopsis"> <em class="replaceable"><code>string</code></em> SIMILAR TO <em class="replaceable"><code>pattern</code></em> [<span class="optional">ESCAPE <em class="replaceable"><code>escape-character</code></em></span>] <em class="replaceable"><code>string</code></em> NOT SIMILAR TO <em class="replaceable"><code>pattern</code></em> [<span class="optional">ESCAPE <em class="replaceable"><code>escape-character</code></em></span>] </pre><p> The <code class="function">SIMILAR TO</code> operator returns true or false depending on whether its pattern matches the given string. It is similar to <code class="function">LIKE</code>, except that it interprets the pattern using the SQL standard's definition of a regular expression. SQL regular expressions are a curious cross between <code class="function">LIKE</code> notation and common (POSIX) regular expression notation. </p><p> Like <code class="function">LIKE</code>, the <code class="function">SIMILAR TO</code> operator succeeds only if its pattern matches the entire string; this is unlike common regular expression behavior where the pattern can match any part of the string. Also like <code class="function">LIKE</code>, <code class="function">SIMILAR TO</code> uses <code class="literal">_</code> and <code class="literal">%</code> as wildcard characters denoting any single character and any string, respectively (these are comparable to <code class="literal">.</code> and <code class="literal">.*</code> in POSIX regular expressions). </p><p> In addition to these facilities borrowed from <code class="function">LIKE</code>, <code class="function">SIMILAR TO</code> supports these pattern-matching metacharacters borrowed from POSIX regular expressions: </p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p> <code class="literal">|</code> denotes alternation (either of two alternatives). </p></li><li class="listitem"><p> <code class="literal">*</code> denotes repetition of the previous item zero or more times. </p></li><li class="listitem"><p> <code class="literal">+</code> denotes repetition of the previous item one or more times. </p></li><li class="listitem"><p> <code class="literal">?</code> denotes repetition of the previous item zero or one time. </p></li><li class="listitem"><p> <code class="literal">{</code><em class="replaceable"><code>m</code></em><code class="literal">}</code> denotes repetition of the previous item exactly <em class="replaceable"><code>m</code></em> times. </p></li><li class="listitem"><p> <code class="literal">{</code><em class="replaceable"><code>m</code></em><code class="literal">,}</code> denotes repetition of the previous item <em class="replaceable"><code>m</code></em> or more times. </p></li><li class="listitem"><p> <code class="literal">{</code><em class="replaceable"><code>m</code></em><code class="literal">,</code><em class="replaceable"><code>n</code></em><code class="literal">}</code> denotes repetition of the previous item at least <em class="replaceable"><code>m</code></em> and not more than <em class="replaceable"><code>n</code></em> times. </p></li><li class="listitem"><p> Parentheses <code class="literal">()</code> can be used to group items into a single logical item. </p></li><li class="listitem"><p> A bracket expression <code class="literal">[...]</code> specifies a character class, just as in POSIX regular expressions. </p></li></ul></div><p> Notice that the period (<code class="literal">.</code>) is not a metacharacter for <code class="function">SIMILAR TO</code>. </p><p> As with <code class="function">LIKE</code>, a backslash disables the special meaning of any of these metacharacters. A different escape character can be specified with <code class="literal">ESCAPE</code>, or the escape capability can be disabled by writing <code class="literal">ESCAPE ''</code>. </p><p> According to the SQL standard, omitting <code class="literal">ESCAPE</code> means there is no escape character (rather than defaulting to a backslash), and a zero-length <code class="literal">ESCAPE</code> value is disallowed. <span class="productname">PostgreSQL</span>'s behavior in this regard is therefore slightly nonstandard. </p><p> Another nonstandard extension is that following the escape character with a letter or digit provides access to the escape sequences defined for POSIX regular expressions; see <a class="xref" href="functions-matching.html#POSIX-CHARACTER-ENTRY-ESCAPES-TABLE" title="Table 9.20. Regular Expression Character-Entry Escapes">Table 9.20</a>, <a class="xref" href="functions-matching.html#POSIX-CLASS-SHORTHAND-ESCAPES-TABLE" title="Table 9.21. Regular Expression Class-Shorthand Escapes">Table 9.21</a>, and <a class="xref" href="functions-matching.html#POSIX-CONSTRAINT-ESCAPES-TABLE" title="Table 9.22. Regular Expression Constraint Escapes">Table 9.22</a> below. </p><p> Some examples: </p><pre class="programlisting"> 'abc' SIMILAR TO 'abc' <em class="lineannotation"><span class="lineannotation">true</span></em> 'abc' SIMILAR TO 'a' <em class="lineannotation"><span class="lineannotation">false</span></em> 'abc' SIMILAR TO '%(b|d)%' <em class="lineannotation"><span class="lineannotation">true</span></em> 'abc' SIMILAR TO '(b|c)%' <em class="lineannotation"><span class="lineannotation">false</span></em> '-abc-' SIMILAR TO '%\mabc\M%' <em class="lineannotation"><span class="lineannotation">true</span></em> 'xabcy' SIMILAR TO '%\mabc\M%' <em class="lineannotation"><span class="lineannotation">false</span></em> </pre><p> </p><p> The <code class="function">substring</code> function with three parameters provides extraction of a substring that matches an SQL regular expression pattern. The function can be written according to standard SQL syntax: </p><pre class="synopsis"> substring(<em class="replaceable"><code>string</code></em> similar <em class="replaceable"><code>pattern</code></em> escape <em class="replaceable"><code>escape-character</code></em>) </pre><p> or using the now obsolete SQL:1999 syntax: </p><pre class="synopsis"> substring(<em class="replaceable"><code>string</code></em> from <em class="replaceable"><code>pattern</code></em> for <em class="replaceable"><code>escape-character</code></em>) </pre><p> or as a plain three-argument function: </p><pre class="synopsis"> substring(<em class="replaceable"><code>string</code></em>, <em class="replaceable"><code>pattern</code></em>, <em class="replaceable"><code>escape-character</code></em>) </pre><p> As with <code class="literal">SIMILAR TO</code>, the specified pattern must match the entire data string, or else the function fails and returns null. To indicate the part of the pattern for which the matching data sub-string is of interest, the pattern should contain two occurrences of the escape character followed by a double quote (<code class="literal">"</code>). The text matching the portion of the pattern between these separators is returned when the match is successful. </p><p> The escape-double-quote separators actually divide <code class="function">substring</code>'s pattern into three independent regular expressions; for example, a vertical bar (<code class="literal">|</code>) in any of the three sections affects only that section. Also, the first and third of these regular expressions are defined to match the smallest possible amount of text, not the largest, when there is any ambiguity about how much of the data string matches which pattern. (In POSIX parlance, the first and third regular expressions are forced to be non-greedy.) </p><p> As an extension to the SQL standard, <span class="productname">PostgreSQL</span> allows there to be just one escape-double-quote separator, in which case the third regular expression is taken as empty; or no separators, in which case the first and third regular expressions are taken as empty. </p><p> Some examples, with <code class="literal">#"</code> delimiting the return string: </p><pre class="programlisting"> substring('foobar' similar '%#"o_b#"%' escape '#') <em class="lineannotation"><span class="lineannotation">oob</span></em> substring('foobar' similar '#"o_b#"%' escape '#') <em class="lineannotation"><span class="lineannotation">NULL</span></em> </pre><p> </p></div><div class="sect2" id="FUNCTIONS-POSIX-REGEXP"><div class="titlepage"><div><div><h3 class="title">9.7.3. <acronym class="acronym">POSIX</acronym> Regular Expressions <a href="#FUNCTIONS-POSIX-REGEXP" class="id_link">#</a></h3></div></div></div><a id="id-1.5.8.13.9.2" class="indexterm"></a><a id="id-1.5.8.13.9.3" class="indexterm"></a><a id="id-1.5.8.13.9.4" class="indexterm"></a><a id="id-1.5.8.13.9.5" class="indexterm"></a><a id="id-1.5.8.13.9.6" class="indexterm"></a><a id="id-1.5.8.13.9.7" class="indexterm"></a><a id="id-1.5.8.13.9.8" class="indexterm"></a><a id="id-1.5.8.13.9.9" class="indexterm"></a><a id="id-1.5.8.13.9.10" class="indexterm"></a><a id="id-1.5.8.13.9.11" class="indexterm"></a><a id="id-1.5.8.13.9.12" class="indexterm"></a><p> <a class="xref" href="functions-matching.html#FUNCTIONS-POSIX-TABLE" title="Table 9.16. Regular Expression Match Operators">Table 9.16</a> lists the available operators for pattern matching using POSIX regular expressions. </p><div class="table" id="FUNCTIONS-POSIX-TABLE"><p class="title"><strong>Table 9.16. Regular Expression Match Operators</strong></p><div class="table-contents"><table class="table" summary="Regular Expression Match Operators" border="1"><colgroup><col /></colgroup><thead><tr><th class="func_table_entry"><p class="func_signature"> Operator </p> <p> Description </p> <p> Example(s) </p></th></tr></thead><tbody><tr><td class="func_table_entry"><p class="func_signature"> <code class="type">text</code> <code class="literal">~</code> <code class="type">text</code> → <code class="returnvalue">boolean</code> </p> <p> String matches regular expression, case sensitively </p> <p> <code class="literal">'thomas' ~ 't.*ma'</code> → <code class="returnvalue">t</code> </p></td></tr><tr><td class="func_table_entry"><p class="func_signature"> <code class="type">text</code> <code class="literal">~*</code> <code class="type">text</code> → <code class="returnvalue">boolean</code> </p> <p> String matches regular expression, case-insensitively </p> <p> <code class="literal">'thomas' ~* 'T.*ma'</code> → <code class="returnvalue">t</code> </p></td></tr><tr><td class="func_table_entry"><p class="func_signature"> <code class="type">text</code> <code class="literal">!~</code> <code class="type">text</code> → <code class="returnvalue">boolean</code> </p> <p> String does not match regular expression, case sensitively </p> <p> <code class="literal">'thomas' !~ 't.*max'</code> → <code class="returnvalue">t</code> </p></td></tr><tr><td class="func_table_entry"><p class="func_signature"> <code class="type">text</code> <code class="literal">!~*</code> <code class="type">text</code> → <code class="returnvalue">boolean</code> </p> <p> String does not match regular expression, case-insensitively </p> <p> <code class="literal">'thomas' !~* 'T.*ma'</code> → <code class="returnvalue">f</code> </p></td></tr></tbody></table></div></div><br class="table-break" /><p> <acronym class="acronym">POSIX</acronym> regular expressions provide a more powerful means for pattern matching than the <code class="function">LIKE</code> and <code class="function">SIMILAR TO</code> operators. Many Unix tools such as <code class="command">egrep</code>, <code class="command">sed</code>, or <code class="command">awk</code> use a pattern matching language that is similar to the one described here. </p><p> A regular expression is a character sequence that is an abbreviated definition of a set of strings (a <em class="firstterm">regular set</em>). A string is said to match a regular expression if it is a member of the regular set described by the regular expression. As with <code class="function">LIKE</code>, pattern characters match string characters exactly unless they are special characters in the regular expression language — but regular expressions use different special characters than <code class="function">LIKE</code> does. Unlike <code class="function">LIKE</code> patterns, a regular expression is allowed to match anywhere within a string, unless the regular expression is explicitly anchored to the beginning or end of the string. </p><p> Some examples: </p><pre class="programlisting"> 'abcd' ~ 'bc' <em class="lineannotation"><span class="lineannotation">true</span></em> 'abcd' ~ 'a.c' <em class="lineannotation"><span class="lineannotation">true — dot matches any character</span></em> 'abcd' ~ 'a.*d' <em class="lineannotation"><span class="lineannotation">true — <code class="literal">*</code> repeats the preceding pattern item</span></em> 'abcd' ~ '(b|x)' <em class="lineannotation"><span class="lineannotation">true — <code class="literal">|</code> means OR, parentheses group</span></em> 'abcd' ~ '^a' <em class="lineannotation"><span class="lineannotation">true — <code class="literal">^</code> anchors to start of string</span></em> 'abcd' ~ '^(b|c)' <em class="lineannotation"><span class="lineannotation">false — would match except for anchoring</span></em> </pre><p> </p><p> The <acronym class="acronym">POSIX</acronym> pattern language is described in much greater detail below. </p><p> The <code class="function">substring</code> function with two parameters, <code class="function">substring(<em class="replaceable"><code>string</code></em> from <em class="replaceable"><code>pattern</code></em>)</code>, provides extraction of a substring that matches a POSIX regular expression pattern. It returns null if there is no match, otherwise the first portion of the text that matched the pattern. But if the pattern contains any parentheses, the portion of the text that matched the first parenthesized subexpression (the one whose left parenthesis comes first) is returned. You can put parentheses around the whole expression if you want to use parentheses within it without triggering this exception. If you need parentheses in the pattern before the subexpression you want to extract, see the non-capturing parentheses described below. </p><p> Some examples: </p><pre class="programlisting"> substring('foobar' from 'o.b') <em class="lineannotation"><span class="lineannotation">oob</span></em> substring('foobar' from 'o(.)b') <em class="lineannotation"><span class="lineannotation">o</span></em> </pre><p> </p><p> The <code class="function">regexp_count</code> function counts the number of places where a POSIX regular expression pattern matches a string. It has the syntax <code class="function">regexp_count</code>(<em class="replaceable"><code>string</code></em>, <em class="replaceable"><code>pattern</code></em> [<span class="optional">, <em class="replaceable"><code>start</code></em> [<span class="optional">, <em class="replaceable"><code>flags</code></em> </span>]</span>]). <em class="replaceable"><code>pattern</code></em> is searched for in <em class="replaceable"><code>string</code></em>, normally from the beginning of the string, but if the <em class="replaceable"><code>start</code></em> parameter is provided then beginning from that character index. The <em class="replaceable"><code>flags</code></em> parameter is an optional text string containing zero or more single-letter flags that change the function's behavior. For example, including <code class="literal">i</code> in <em class="replaceable"><code>flags</code></em> specifies case-insensitive matching. Supported flags are described in <a class="xref" href="functions-matching.html#POSIX-EMBEDDED-OPTIONS-TABLE" title="Table 9.24. ARE Embedded-Option Letters">Table 9.24</a>. </p><p> Some examples: </p><pre class="programlisting"> regexp_count('ABCABCAXYaxy', 'A.') <em class="lineannotation"><span class="lineannotation">3</span></em> regexp_count('ABCABCAXYaxy', 'A.', 1, 'i') <em class="lineannotation"><span class="lineannotation">4</span></em> </pre><p> </p><p> The <code class="function">regexp_instr</code> function returns the starting or ending position of the <em class="replaceable"><code>N</code></em>'th match of a POSIX regular expression pattern to a string, or zero if there is no such match. It has the syntax <code class="function">regexp_instr</code>(<em class="replaceable"><code>string</code></em>, <em class="replaceable"><code>pattern</code></em> [<span class="optional">, <em class="replaceable"><code>start</code></em> [<span class="optional">, <em class="replaceable"><code>N</code></em> [<span class="optional">, <em class="replaceable"><code>endoption</code></em> [<span class="optional">, <em class="replaceable"><code>flags</code></em> [<span class="optional">, <em class="replaceable"><code>subexpr</code></em> </span>]</span>]</span>]</span>]</span>]). <em class="replaceable"><code>pattern</code></em> is searched for in <em class="replaceable"><code>string</code></em>, normally from the beginning of the string, but if the <em class="replaceable"><code>start</code></em> parameter is provided then beginning from that character index. If <em class="replaceable"><code>N</code></em> is specified then the <em class="replaceable"><code>N</code></em>'th match of the pattern is located, otherwise the first match is located. If the <em class="replaceable"><code>endoption</code></em> parameter is omitted or specified as zero, the function returns the position of the first character of the match. Otherwise, <em class="replaceable"><code>endoption</code></em> must be one, and the function returns the position of the character following the match. The <em class="replaceable"><code>flags</code></em> parameter is an optional text string containing zero or more single-letter flags that change the function's behavior. Supported flags are described in <a class="xref" href="functions-matching.html#POSIX-EMBEDDED-OPTIONS-TABLE" title="Table 9.24. ARE Embedded-Option Letters">Table 9.24</a>. For a pattern containing parenthesized subexpressions, <em class="replaceable"><code>subexpr</code></em> is an integer indicating which subexpression is of interest: the result identifies the position of the substring matching that subexpression. Subexpressions are numbered in the order of their leading parentheses. When <em class="replaceable"><code>subexpr</code></em> is omitted or zero, the result identifies the position of the whole match regardless of parenthesized subexpressions. </p><p> Some examples: </p><pre class="programlisting"> regexp_instr('number of your street, town zip, FR', '[^,]+', 1, 2) <em class="lineannotation"><span class="lineannotation">23</span></em> regexp_instr('ABCDEFGHI', '(c..)(...)', 1, 1, 0, 'i', 2) <em class="lineannotation"><span class="lineannotation">6</span></em> </pre><p> </p><p> The <code class="function">regexp_like</code> function checks whether a match of a POSIX regular expression pattern occurs within a string, returning boolean true or false. It has the syntax <code class="function">regexp_like</code>(<em class="replaceable"><code>string</code></em>, <em class="replaceable"><code>pattern</code></em> [<span class="optional">, <em class="replaceable"><code>flags</code></em> </span>]). The <em class="replaceable"><code>flags</code></em> parameter is an optional text string containing zero or more single-letter flags that change the function's behavior. Supported flags are described in <a class="xref" href="functions-matching.html#POSIX-EMBEDDED-OPTIONS-TABLE" title="Table 9.24. ARE Embedded-Option Letters">Table 9.24</a>. This function has the same results as the <code class="literal">~</code> operator if no flags are specified. If only the <code class="literal">i</code> flag is specified, it has the same results as the <code class="literal">~*</code> operator. </p><p> Some examples: </p><pre class="programlisting"> regexp_like('Hello World', 'world') <em class="lineannotation"><span class="lineannotation">false</span></em> regexp_like('Hello World', 'world', 'i') <em class="lineannotation"><span class="lineannotation">true</span></em> </pre><p> </p><p> The <code class="function">regexp_match</code> function returns a text array of matching substring(s) within the first match of a POSIX regular expression pattern to a string. It has the syntax <code class="function">regexp_match</code>(<em class="replaceable"><code>string</code></em>, <em class="replaceable"><code>pattern</code></em> [<span class="optional">, <em class="replaceable"><code>flags</code></em> </span>]). If there is no match, the result is <code class="literal">NULL</code>. If a match is found, and the <em class="replaceable"><code>pattern</code></em> contains no parenthesized subexpressions, then the result is a single-element text array containing the substring matching the whole pattern. If a match is found, and the <em class="replaceable"><code>pattern</code></em> contains parenthesized subexpressions, then the result is a text array whose <em class="replaceable"><code>n</code></em>'th element is the substring matching the <em class="replaceable"><code>n</code></em>'th parenthesized subexpression of the <em class="replaceable"><code>pattern</code></em> (not counting <span class="quote">“<span class="quote">non-capturing</span>”</span> parentheses; see below for details). The <em class="replaceable"><code>flags</code></em> parameter is an optional text string containing zero or more single-letter flags that change the function's behavior. Supported flags are described in <a class="xref" href="functions-matching.html#POSIX-EMBEDDED-OPTIONS-TABLE" title="Table 9.24. ARE Embedded-Option Letters">Table 9.24</a>. </p><p> Some examples: </p><pre class="programlisting"> SELECT regexp_match('foobarbequebaz', 'bar.*que'); regexp_match -------------- {barbeque} (1 row) SELECT regexp_match('foobarbequebaz', '(bar)(beque)'); regexp_match -------------- {bar,beque} (1 row) </pre><p> </p><div class="tip"><h3 class="title">Tip</h3><p> In the common case where you just want the whole matching substring or <code class="literal">NULL</code> for no match, the best solution is to use <code class="function">regexp_substr()</code>. However, <code class="function">regexp_substr()</code> only exists in <span class="productname">PostgreSQL</span> version 15 and up. When working in older versions, you can extract the first element of <code class="function">regexp_match()</code>'s result, for example: </p><pre class="programlisting"> SELECT (regexp_match('foobarbequebaz', 'bar.*que'))[1]; regexp_match -------------- barbeque (1 row) </pre><p> </p></div><p> The <code class="function">regexp_matches</code> function returns a set of text arrays of matching substring(s) within matches of a POSIX regular expression pattern to a string. It has the same syntax as <code class="function">regexp_match</code>. This function returns no rows if there is no match, one row if there is a match and the <code class="literal">g</code> flag is not given, or <em class="replaceable"><code>N</code></em> rows if there are <em class="replaceable"><code>N</code></em> matches and the <code class="literal">g</code> flag is given. Each returned row is a text array containing the whole matched substring or the substrings matching parenthesized subexpressions of the <em class="replaceable"><code>pattern</code></em>, just as described above for <code class="function">regexp_match</code>. <code class="function">regexp_matches</code> accepts all the flags shown in <a class="xref" href="functions-matching.html#POSIX-EMBEDDED-OPTIONS-TABLE" title="Table 9.24. ARE Embedded-Option Letters">Table 9.24</a>, plus the <code class="literal">g</code> flag which commands it to return all matches, not just the first one. </p><p> Some examples: </p><pre class="programlisting"> SELECT regexp_matches('foo', 'not there'); regexp_matches ---------------- (0 rows) SELECT regexp_matches('foobarbequebazilbarfbonk', '(b[^b]+)(b[^b]+)', 'g'); regexp_matches ---------------- {bar,beque} {bazil,barf} (2 rows) </pre><p> </p><div class="tip"><h3 class="title">Tip</h3><p> In most cases <code class="function">regexp_matches()</code> should be used with the <code class="literal">g</code> flag, since if you only want the first match, it's easier and more efficient to use <code class="function">regexp_match()</code>. However, <code class="function">regexp_match()</code> only exists in <span class="productname">PostgreSQL</span> version 10 and up. When working in older versions, a common trick is to place a <code class="function">regexp_matches()</code> call in a sub-select, for example: </p><pre class="programlisting"> SELECT col1, (SELECT regexp_matches(col2, '(bar)(beque)')) FROM tab; </pre><p> This produces a text array if there's a match, or <code class="literal">NULL</code> if not, the same as <code class="function">regexp_match()</code> would do. Without the sub-select, this query would produce no output at all for table rows without a match, which is typically not the desired behavior. </p></div><p> The <code class="function">regexp_replace</code> function provides substitution of new text for substrings that match POSIX regular expression patterns. It has the syntax <code class="function">regexp_replace</code>(<em class="replaceable"><code>source</code></em>, <em class="replaceable"><code>pattern</code></em>, <em class="replaceable"><code>replacement</code></em> [<span class="optional">, <em class="replaceable"><code>start</code></em> [<span class="optional">, <em class="replaceable"><code>N</code></em> </span>]</span>] [<span class="optional">, <em class="replaceable"><code>flags</code></em> </span>]). (Notice that <em class="replaceable"><code>N</code></em> cannot be specified unless <em class="replaceable"><code>start</code></em> is, but <em class="replaceable"><code>flags</code></em> can be given in any case.) The <em class="replaceable"><code>source</code></em> string is returned unchanged if there is no match to the <em class="replaceable"><code>pattern</code></em>. If there is a match, the <em class="replaceable"><code>source</code></em> string is returned with the <em class="replaceable"><code>replacement</code></em> string substituted for the matching substring. The <em class="replaceable"><code>replacement</code></em> string can contain <code class="literal">\</code><em class="replaceable"><code>n</code></em>, where <em class="replaceable"><code>n</code></em> is 1 through 9, to indicate that the source substring matching the <em class="replaceable"><code>n</code></em>'th parenthesized subexpression of the pattern should be inserted, and it can contain <code class="literal">\&</code> to indicate that the substring matching the entire pattern should be inserted. Write <code class="literal">\\</code> if you need to put a literal backslash in the replacement text. <em class="replaceable"><code>pattern</code></em> is searched for in <em class="replaceable"><code>string</code></em>, normally from the beginning of the string, but if the <em class="replaceable"><code>start</code></em> parameter is provided then beginning from that character index. By default, only the first match of the pattern is replaced. If <em class="replaceable"><code>N</code></em> is specified and is greater than zero, then the <em class="replaceable"><code>N</code></em>'th match of the pattern is replaced. If the <code class="literal">g</code> flag is given, or if <em class="replaceable"><code>N</code></em> is specified and is zero, then all matches at or after the <em class="replaceable"><code>start</code></em> position are replaced. (The <code class="literal">g</code> flag is ignored when <em class="replaceable"><code>N</code></em> is specified.) The <em class="replaceable"><code>flags</code></em> parameter is an optional text string containing zero or more single-letter flags that change the function's behavior. Supported flags (though not <code class="literal">g</code>) are described in <a class="xref" href="functions-matching.html#POSIX-EMBEDDED-OPTIONS-TABLE" title="Table 9.24. ARE Embedded-Option Letters">Table 9.24</a>. </p><p> Some examples: </p><pre class="programlisting"> regexp_replace('foobarbaz', 'b..', 'X') <em class="lineannotation"><span class="lineannotation">fooXbaz</span></em> regexp_replace('foobarbaz', 'b..', 'X', 'g') <em class="lineannotation"><span class="lineannotation">fooXX</span></em> regexp_replace('foobarbaz', 'b(..)', 'X\1Y', 'g') <em class="lineannotation"><span class="lineannotation">fooXarYXazY</span></em> regexp_replace('A PostgreSQL function', 'a|e|i|o|u', 'X', 1, 0, 'i') <em class="lineannotation"><span class="lineannotation">X PXstgrXSQL fXnctXXn</span></em> regexp_replace('A PostgreSQL function', 'a|e|i|o|u', 'X', 1, 3, 'i') <em class="lineannotation"><span class="lineannotation">A PostgrXSQL function</span></em> </pre><p> </p><p> The <code class="function">regexp_split_to_table</code> function splits a string using a POSIX regular expression pattern as a delimiter. It has the syntax <code class="function">regexp_split_to_table</code>(<em class="replaceable"><code>string</code></em>, <em class="replaceable"><code>pattern</code></em> [<span class="optional">, <em class="replaceable"><code>flags</code></em> </span>]). If there is no match to the <em class="replaceable"><code>pattern</code></em>, the function returns the <em class="replaceable"><code>string</code></em>. If there is at least one match, for each match it returns the text from the end of the last match (or the beginning of the string) to the beginning of the match. When there are no more matches, it returns the text from the end of the last match to the end of the string. The <em class="replaceable"><code>flags</code></em> parameter is an optional text string containing zero or more single-letter flags that change the function's behavior. <code class="function">regexp_split_to_table</code> supports the flags described in <a class="xref" href="functions-matching.html#POSIX-EMBEDDED-OPTIONS-TABLE" title="Table 9.24. ARE Embedded-Option Letters">Table 9.24</a>. </p><p> The <code class="function">regexp_split_to_array</code> function behaves the same as <code class="function">regexp_split_to_table</code>, except that <code class="function">regexp_split_to_array</code> returns its result as an array of <code class="type">text</code>. It has the syntax <code class="function">regexp_split_to_array</code>(<em class="replaceable"><code>string</code></em>, <em class="replaceable"><code>pattern</code></em> [<span class="optional">, <em class="replaceable"><code>flags</code></em> </span>]). The parameters are the same as for <code class="function">regexp_split_to_table</code>. </p><p> Some examples: </p><pre class="programlisting"> SELECT foo FROM regexp_split_to_table('the quick brown fox jumps over the lazy dog', '\s+') AS foo; foo ------- the quick brown fox jumps over the lazy dog (9 rows) SELECT regexp_split_to_array('the quick brown fox jumps over the lazy dog', '\s+'); regexp_split_to_array ----------------------------------------------- {the,quick,brown,fox,jumps,over,the,lazy,dog} (1 row) SELECT foo FROM regexp_split_to_table('the quick brown fox', '\s*') AS foo; foo ----- t h e q u i c k b r o w n f o x (16 rows) </pre><p> </p><p> As the last example demonstrates, the regexp split functions ignore zero-length matches that occur at the start or end of the string or immediately after a previous match. This is contrary to the strict definition of regexp matching that is implemented by the other regexp functions, but is usually the most convenient behavior in practice. Other software systems such as Perl use similar definitions. </p><p> The <code class="function">regexp_substr</code> function returns the substring that matches a POSIX regular expression pattern, or <code class="literal">NULL</code> if there is no match. It has the syntax <code class="function">regexp_substr</code>(<em class="replaceable"><code>string</code></em>, <em class="replaceable"><code>pattern</code></em> [<span class="optional">, <em class="replaceable"><code>start</code></em> [<span class="optional">, <em class="replaceable"><code>N</code></em> [<span class="optional">, <em class="replaceable"><code>flags</code></em> [<span class="optional">, <em class="replaceable"><code>subexpr</code></em> </span>]</span>]</span>]</span>]). <em class="replaceable"><code>pattern</code></em> is searched for in <em class="replaceable"><code>string</code></em>, normally from the beginning of the string, but if the <em class="replaceable"><code>start</code></em> parameter is provided then beginning from that character index. If <em class="replaceable"><code>N</code></em> is specified then the <em class="replaceable"><code>N</code></em>'th match of the pattern is returned, otherwise the first match is returned. The <em class="replaceable"><code>flags</code></em> parameter is an optional text string containing zero or more single-letter flags that change the function's behavior. Supported flags are described in <a class="xref" href="functions-matching.html#POSIX-EMBEDDED-OPTIONS-TABLE" title="Table 9.24. ARE Embedded-Option Letters">Table 9.24</a>. For a pattern containing parenthesized subexpressions, <em class="replaceable"><code>subexpr</code></em> is an integer indicating which subexpression is of interest: the result is the substring matching that subexpression. Subexpressions are numbered in the order of their leading parentheses. When <em class="replaceable"><code>subexpr</code></em> is omitted or zero, the result is the whole match regardless of parenthesized subexpressions. </p><p> Some examples: </p><pre class="programlisting"> regexp_substr('number of your street, town zip, FR', '[^,]+', 1, 2) <em class="lineannotation"><span class="lineannotation"> town zip</span></em> regexp_substr('ABCDEFGHI', '(c..)(...)', 1, 1, 'i', 2) <em class="lineannotation"><span class="lineannotation">FGH</span></em> </pre><p> </p><div class="sect3" id="POSIX-SYNTAX-DETAILS"><div class="titlepage"><div><div><h4 class="title">9.7.3.1. Regular Expression Details <a href="#POSIX-SYNTAX-DETAILS" class="id_link">#</a></h4></div></div></div><p> <span class="productname">PostgreSQL</span>'s regular expressions are implemented using a software package written by Henry Spencer. Much of the description of regular expressions below is copied verbatim from his manual. </p><p> Regular expressions (<acronym class="acronym">RE</acronym>s), as defined in <acronym class="acronym">POSIX</acronym> 1003.2, come in two forms: <em class="firstterm">extended</em> <acronym class="acronym">RE</acronym>s or <acronym class="acronym">ERE</acronym>s (roughly those of <code class="command">egrep</code>), and <em class="firstterm">basic</em> <acronym class="acronym">RE</acronym>s or <acronym class="acronym">BRE</acronym>s (roughly those of <code class="command">ed</code>). <span class="productname">PostgreSQL</span> supports both forms, and also implements some extensions that are not in the POSIX standard, but have become widely used due to their availability in programming languages such as Perl and Tcl. <acronym class="acronym">RE</acronym>s using these non-POSIX extensions are called <em class="firstterm">advanced</em> <acronym class="acronym">RE</acronym>s or <acronym class="acronym">ARE</acronym>s in this documentation. AREs are almost an exact superset of EREs, but BREs have several notational incompatibilities (as well as being much more limited). We first describe the ARE and ERE forms, noting features that apply only to AREs, and then describe how BREs differ. </p><div class="note"><h3 class="title">Note</h3><p> <span class="productname">PostgreSQL</span> always initially presumes that a regular expression follows the ARE rules. However, the more limited ERE or BRE rules can be chosen by prepending an <em class="firstterm">embedded option</em> to the RE pattern, as described in <a class="xref" href="functions-matching.html#POSIX-METASYNTAX" title="9.7.3.4. Regular Expression Metasyntax">Section 9.7.3.4</a>. This can be useful for compatibility with applications that expect exactly the <acronym class="acronym">POSIX</acronym> 1003.2 rules. </p></div><p> A regular expression is defined as one or more <em class="firstterm">branches</em>, separated by <code class="literal">|</code>. It matches anything that matches one of the branches. </p><p> A branch is zero or more <em class="firstterm">quantified atoms</em> or <em class="firstterm">constraints</em>, concatenated. It matches a match for the first, followed by a match for the second, etc.; an empty branch matches the empty string. </p><p> A quantified atom is an <em class="firstterm">atom</em> possibly followed by a single <em class="firstterm">quantifier</em>. Without a quantifier, it matches a match for the atom. With a quantifier, it can match some number of matches of the atom. An <em class="firstterm">atom</em> can be any of the possibilities shown in <a class="xref" href="functions-matching.html#POSIX-ATOMS-TABLE" title="Table 9.17. Regular Expression Atoms">Table 9.17</a>. The possible quantifiers and their meanings are shown in <a class="xref" href="functions-matching.html#POSIX-QUANTIFIERS-TABLE" title="Table 9.18. Regular Expression Quantifiers">Table 9.18</a>. </p><p> A <em class="firstterm">constraint</em> matches an empty string, but matches only when specific conditions are met. A constraint can be used where an atom could be used, except it cannot be followed by a quantifier. The simple constraints are shown in <a class="xref" href="functions-matching.html#POSIX-CONSTRAINTS-TABLE" title="Table 9.19. Regular Expression Constraints">Table 9.19</a>; some more constraints are described later. </p><div class="table" id="POSIX-ATOMS-TABLE"><p class="title"><strong>Table 9.17. Regular Expression Atoms</strong></p><div class="table-contents"><table class="table" summary="Regular Expression Atoms" border="1"><colgroup><col /><col /></colgroup><thead><tr><th>Atom</th><th>Description</th></tr></thead><tbody><tr><td> <code class="literal">(</code><em class="replaceable"><code>re</code></em><code class="literal">)</code> </td><td> (where <em class="replaceable"><code>re</code></em> is any regular expression) matches a match for <em class="replaceable"><code>re</code></em>, with the match noted for possible reporting </td></tr><tr><td> <code class="literal">(?:</code><em class="replaceable"><code>re</code></em><code class="literal">)</code> </td><td> as above, but the match is not noted for reporting (a <span class="quote">“<span class="quote">non-capturing</span>”</span> set of parentheses) (AREs only) </td></tr><tr><td> <code class="literal">.</code> </td><td> matches any single character </td></tr><tr><td> <code class="literal">[</code><em class="replaceable"><code>chars</code></em><code class="literal">]</code> </td><td> a <em class="firstterm">bracket expression</em>, matching any one of the <em class="replaceable"><code>chars</code></em> (see <a class="xref" href="functions-matching.html#POSIX-BRACKET-EXPRESSIONS" title="9.7.3.2. Bracket Expressions">Section 9.7.3.2</a> for more detail) </td></tr><tr><td> <code class="literal">\</code><em class="replaceable"><code>k</code></em> </td><td> (where <em class="replaceable"><code>k</code></em> is a non-alphanumeric character) matches that character taken as an ordinary character, e.g., <code class="literal">\\</code> matches a backslash character </td></tr><tr><td> <code class="literal">\</code><em class="replaceable"><code>c</code></em> </td><td> where <em class="replaceable"><code>c</code></em> is alphanumeric (possibly followed by other characters) is an <em class="firstterm">escape</em>, see <a class="xref" href="functions-matching.html#POSIX-ESCAPE-SEQUENCES" title="9.7.3.3. Regular Expression Escapes">Section 9.7.3.3</a> (AREs only; in EREs and BREs, this matches <em class="replaceable"><code>c</code></em>) </td></tr><tr><td> <code class="literal">{</code> </td><td> when followed by a character other than a digit, matches the left-brace character <code class="literal">{</code>; when followed by a digit, it is the beginning of a <em class="replaceable"><code>bound</code></em> (see below) </td></tr><tr><td> <em class="replaceable"><code>x</code></em> </td><td> where <em class="replaceable"><code>x</code></em> is a single character with no other significance, matches that character </td></tr></tbody></table></div></div><br class="table-break" /><p> An RE cannot end with a backslash (<code class="literal">\</code>). </p><div class="note"><h3 class="title">Note</h3><p> If you have <a class="xref" href="runtime-config-compatible.html#GUC-STANDARD-CONFORMING-STRINGS">standard_conforming_strings</a> turned off, any backslashes you write in literal string constants will need to be doubled. See <a class="xref" href="sql-syntax-lexical.html#SQL-SYNTAX-STRINGS" title="4.1.2.1. String Constants">Section 4.1.2.1</a> for more information. </p></div><div class="table" id="POSIX-QUANTIFIERS-TABLE"><p class="title"><strong>Table 9.18. Regular Expression Quantifiers</strong></p><div class="table-contents"><table class="table" summary="Regular Expression Quantifiers" border="1"><colgroup><col /><col /></colgroup><thead><tr><th>Quantifier</th><th>Matches</th></tr></thead><tbody><tr><td> <code class="literal">*</code> </td><td> a sequence of 0 or more matches of the atom </td></tr><tr><td> <code class="literal">+</code> </td><td> a sequence of 1 or more matches of the atom </td></tr><tr><td> <code class="literal">?</code> </td><td> a sequence of 0 or 1 matches of the atom </td></tr><tr><td> <code class="literal">{</code><em class="replaceable"><code>m</code></em><code class="literal">}</code> </td><td> a sequence of exactly <em class="replaceable"><code>m</code></em> matches of the atom </td></tr><tr><td> <code class="literal">{</code><em class="replaceable"><code>m</code></em><code class="literal">,}</code> </td><td> a sequence of <em class="replaceable"><code>m</code></em> or more matches of the atom </td></tr><tr><td> <code class="literal">{</code><em class="replaceable"><code>m</code></em><code class="literal">,</code><em class="replaceable"><code>n</code></em><code class="literal">}</code> </td><td> a sequence of <em class="replaceable"><code>m</code></em> through <em class="replaceable"><code>n</code></em> (inclusive) matches of the atom; <em class="replaceable"><code>m</code></em> cannot exceed <em class="replaceable"><code>n</code></em> </td></tr><tr><td> <code class="literal">*?</code> </td><td> non-greedy version of <code class="literal">*</code> </td></tr><tr><td> <code class="literal">+?</code> </td><td> non-greedy version of <code class="literal">+</code> </td></tr><tr><td> <code class="literal">??</code> </td><td> non-greedy version of <code class="literal">?</code> </td></tr><tr><td> <code class="literal">{</code><em class="replaceable"><code>m</code></em><code class="literal">}?</code> </td><td> non-greedy version of <code class="literal">{</code><em class="replaceable"><code>m</code></em><code class="literal">}</code> </td></tr><tr><td> <code class="literal">{</code><em class="replaceable"><code>m</code></em><code class="literal">,}?</code> </td><td> non-greedy version of <code class="literal">{</code><em class="replaceable"><code>m</code></em><code class="literal">,}</code> </td></tr><tr><td> <code class="literal">{</code><em class="replaceable"><code>m</code></em><code class="literal">,</code><em class="replaceable"><code>n</code></em><code class="literal">}?</code> </td><td> non-greedy version of <code class="literal">{</code><em class="replaceable"><code>m</code></em><code class="literal">,</code><em class="replaceable"><code>n</code></em><code class="literal">}</code> </td></tr></tbody></table></div></div><br class="table-break" /><p> The forms using <code class="literal">{</code><em class="replaceable"><code>...</code></em><code class="literal">}</code> are known as <em class="firstterm">bounds</em>. The numbers <em class="replaceable"><code>m</code></em> and <em class="replaceable"><code>n</code></em> within a bound are unsigned decimal integers with permissible values from 0 to 255 inclusive. </p><p> <em class="firstterm">Non-greedy</em> quantifiers (available in AREs only) match the same possibilities as their corresponding normal (<em class="firstterm">greedy</em>) counterparts, but prefer the smallest number rather than the largest number of matches. See <a class="xref" href="functions-matching.html#POSIX-MATCHING-RULES" title="9.7.3.5. Regular Expression Matching Rules">Section 9.7.3.5</a> for more detail. </p><div class="note"><h3 class="title">Note</h3><p> A quantifier cannot immediately follow another quantifier, e.g., <code class="literal">**</code> is invalid. A quantifier cannot begin an expression or subexpression or follow <code class="literal">^</code> or <code class="literal">|</code>. </p></div><div class="table" id="POSIX-CONSTRAINTS-TABLE"><p class="title"><strong>Table 9.19. Regular Expression Constraints</strong></p><div class="table-contents"><table class="table" summary="Regular Expression Constraints" border="1"><colgroup><col /><col /></colgroup><thead><tr><th>Constraint</th><th>Description</th></tr></thead><tbody><tr><td> <code class="literal">^</code> </td><td> matches at the beginning of the string </td></tr><tr><td> <code class="literal">$</code> </td><td> matches at the end of the string </td></tr><tr><td> <code class="literal">(?=</code><em class="replaceable"><code>re</code></em><code class="literal">)</code> </td><td> <em class="firstterm">positive lookahead</em> matches at any point where a substring matching <em class="replaceable"><code>re</code></em> begins (AREs only) </td></tr><tr><td> <code class="literal">(?!</code><em class="replaceable"><code>re</code></em><code class="literal">)</code> </td><td> <em class="firstterm">negative lookahead</em> matches at any point where no substring matching <em class="replaceable"><code>re</code></em> begins (AREs only) </td></tr><tr><td> <code class="literal">(?<=</code><em class="replaceable"><code>re</code></em><code class="literal">)</code> </td><td> <em class="firstterm">positive lookbehind</em> matches at any point where a substring matching <em class="replaceable"><code>re</code></em> ends (AREs only) </td></tr><tr><td> <code class="literal">(?<!</code><em class="replaceable"><code>re</code></em><code class="literal">)</code> </td><td> <em class="firstterm">negative lookbehind</em> matches at any point where no substring matching <em class="replaceable"><code>re</code></em> ends (AREs only) </td></tr></tbody></table></div></div><br class="table-break" /><p> Lookahead and lookbehind constraints cannot contain <em class="firstterm">back references</em> (see <a class="xref" href="functions-matching.html#POSIX-ESCAPE-SEQUENCES" title="9.7.3.3. Regular Expression Escapes">Section 9.7.3.3</a>), and all parentheses within them are considered non-capturing. </p></div><div class="sect3" id="POSIX-BRACKET-EXPRESSIONS"><div class="titlepage"><div><div><h4 class="title">9.7.3.2. Bracket Expressions <a href="#POSIX-BRACKET-EXPRESSIONS" class="id_link">#</a></h4></div></div></div><p> A <em class="firstterm">bracket expression</em> is a list of characters enclosed in <code class="literal">[]</code>. It normally matches any single character from the list (but see below). If the list begins with <code class="literal">^</code>, it matches any single character <span class="emphasis"><em>not</em></span> from the rest of the list. If two characters in the list are separated by <code class="literal">-</code>, this is shorthand for the full range of characters between those two (inclusive) in the collating sequence, e.g., <code class="literal">[0-9]</code> in <acronym class="acronym">ASCII</acronym> matches any decimal digit. It is illegal for two ranges to share an endpoint, e.g., <code class="literal">a-c-e</code>. Ranges are very collating-sequence-dependent, so portable programs should avoid relying on them. </p><p> To include a literal <code class="literal">]</code> in the list, make it the first character (after <code class="literal">^</code>, if that is used). To include a literal <code class="literal">-</code>, make it the first or last character, or the second endpoint of a range. To use a literal <code class="literal">-</code> as the first endpoint of a range, enclose it in <code class="literal">[.</code> and <code class="literal">.]</code> to make it a collating element (see below). With the exception of these characters, some combinations using <code class="literal">[</code> (see next paragraphs), and escapes (AREs only), all other special characters lose their special significance within a bracket expression. In particular, <code class="literal">\</code> is not special when following ERE or BRE rules, though it is special (as introducing an escape) in AREs. </p><p> Within a bracket expression, a collating element (a character, a multiple-character sequence that collates as if it were a single character, or a collating-sequence name for either) enclosed in <code class="literal">[.</code> and <code class="literal">.]</code> stands for the sequence of characters of that collating element. The sequence is treated as a single element of the bracket expression's list. This allows a bracket expression containing a multiple-character collating element to match more than one character, e.g., if the collating sequence includes a <code class="literal">ch</code> collating element, then the RE <code class="literal">[[.ch.]]*c</code> matches the first five characters of <code class="literal">chchcc</code>. </p><div class="note"><h3 class="title">Note</h3><p> <span class="productname">PostgreSQL</span> currently does not support multi-character collating elements. This information describes possible future behavior. </p></div><p> Within a bracket expression, a collating element enclosed in <code class="literal">[=</code> and <code class="literal">=]</code> is an <em class="firstterm">equivalence class</em>, standing for the sequences of characters of all collating elements equivalent to that one, including itself. (If there are no other equivalent collating elements, the treatment is as if the enclosing delimiters were <code class="literal">[.</code> and <code class="literal">.]</code>.) For example, if <code class="literal">o</code> and <code class="literal">^</code> are the members of an equivalence class, then <code class="literal">[[=o=]]</code>, <code class="literal">[[=^=]]</code>, and <code class="literal">[o^]</code> are all synonymous. An equivalence class cannot be an endpoint of a range. </p><p> Within a bracket expression, the name of a character class enclosed in <code class="literal">[:</code> and <code class="literal">:]</code> stands for the list of all characters belonging to that class. A character class cannot be used as an endpoint of a range. The <acronym class="acronym">POSIX</acronym> standard defines these character class names: <code class="literal">alnum</code> (letters and numeric digits), <code class="literal">alpha</code> (letters), <code class="literal">blank</code> (space and tab), <code class="literal">cntrl</code> (control characters), <code class="literal">digit</code> (numeric digits), <code class="literal">graph</code> (printable characters except space), <code class="literal">lower</code> (lower-case letters), <code class="literal">print</code> (printable characters including space), <code class="literal">punct</code> (punctuation), <code class="literal">space</code> (any white space), <code class="literal">upper</code> (upper-case letters), and <code class="literal">xdigit</code> (hexadecimal digits). The behavior of these standard character classes is generally consistent across platforms for characters in the 7-bit ASCII set. Whether a given non-ASCII character is considered to belong to one of these classes depends on the <em class="firstterm">collation</em> that is used for the regular-expression function or operator (see <a class="xref" href="collation.html" title="24.2. Collation Support">Section 24.2</a>), or by default on the database's <code class="envar">LC_CTYPE</code> locale setting (see <a class="xref" href="locale.html" title="24.1. Locale Support">Section 24.1</a>). The classification of non-ASCII characters can vary across platforms even in similarly-named locales. (But the <code class="literal">C</code> locale never considers any non-ASCII characters to belong to any of these classes.) In addition to these standard character classes, <span class="productname">PostgreSQL</span> defines the <code class="literal">word</code> character class, which is the same as <code class="literal">alnum</code> plus the underscore (<code class="literal">_</code>) character, and the <code class="literal">ascii</code> character class, which contains exactly the 7-bit ASCII set. </p><p> There are two special cases of bracket expressions: the bracket expressions <code class="literal">[[:<:]]</code> and <code class="literal">[[:>:]]</code> are constraints, matching empty strings at the beginning and end of a word respectively. A word is defined as a sequence of word characters that is neither preceded nor followed by word characters. A word character is any character belonging to the <code class="literal">word</code> character class, that is, any letter, digit, or underscore. This is an extension, compatible with but not specified by <acronym class="acronym">POSIX</acronym> 1003.2, and should be used with caution in software intended to be portable to other systems. The constraint escapes described below are usually preferable; they are no more standard, but are easier to type. </p></div><div class="sect3" id="POSIX-ESCAPE-SEQUENCES"><div class="titlepage"><div><div><h4 class="title">9.7.3.3. Regular Expression Escapes <a href="#POSIX-ESCAPE-SEQUENCES" class="id_link">#</a></h4></div></div></div><p> <em class="firstterm">Escapes</em> are special sequences beginning with <code class="literal">\</code> followed by an alphanumeric character. Escapes come in several varieties: character entry, class shorthands, constraint escapes, and back references. A <code class="literal">\</code> followed by an alphanumeric character but not constituting a valid escape is illegal in AREs. In EREs, there are no escapes: outside a bracket expression, a <code class="literal">\</code> followed by an alphanumeric character merely stands for that character as an ordinary character, and inside a bracket expression, <code class="literal">\</code> is an ordinary character. (The latter is the one actual incompatibility between EREs and AREs.) </p><p> <em class="firstterm">Character-entry escapes</em> exist to make it easier to specify non-printing and other inconvenient characters in REs. They are shown in <a class="xref" href="functions-matching.html#POSIX-CHARACTER-ENTRY-ESCAPES-TABLE" title="Table 9.20. Regular Expression Character-Entry Escapes">Table 9.20</a>. </p><p> <em class="firstterm">Class-shorthand escapes</em> provide shorthands for certain commonly-used character classes. They are shown in <a class="xref" href="functions-matching.html#POSIX-CLASS-SHORTHAND-ESCAPES-TABLE" title="Table 9.21. Regular Expression Class-Shorthand Escapes">Table 9.21</a>. </p><p> A <em class="firstterm">constraint escape</em> is a constraint, matching the empty string if specific conditions are met, written as an escape. They are shown in <a class="xref" href="functions-matching.html#POSIX-CONSTRAINT-ESCAPES-TABLE" title="Table 9.22. Regular Expression Constraint Escapes">Table 9.22</a>. </p><p> A <em class="firstterm">back reference</em> (<code class="literal">\</code><em class="replaceable"><code>n</code></em>) matches the same string matched by the previous parenthesized subexpression specified by the number <em class="replaceable"><code>n</code></em> (see <a class="xref" href="functions-matching.html#POSIX-CONSTRAINT-BACKREF-TABLE" title="Table 9.23. Regular Expression Back References">Table 9.23</a>). For example, <code class="literal">([bc])\1</code> matches <code class="literal">bb</code> or <code class="literal">cc</code> but not <code class="literal">bc</code> or <code class="literal">cb</code>. The subexpression must entirely precede the back reference in the RE. Subexpressions are numbered in the order of their leading parentheses. Non-capturing parentheses do not define subexpressions. The back reference considers only the string characters matched by the referenced subexpression, not any constraints contained in it. For example, <code class="literal">(^\d)\1</code> will match <code class="literal">22</code>. </p><div class="table" id="POSIX-CHARACTER-ENTRY-ESCAPES-TABLE"><p class="title"><strong>Table 9.20. Regular Expression Character-Entry Escapes</strong></p><div class="table-contents"><table class="table" summary="Regular Expression Character-Entry Escapes" border="1"><colgroup><col /><col /></colgroup><thead><tr><th>Escape</th><th>Description</th></tr></thead><tbody><tr><td> <code class="literal">\a</code> </td><td> alert (bell) character, as in C </td></tr><tr><td> <code class="literal">\b</code> </td><td> backspace, as in C </td></tr><tr><td> <code class="literal">\B</code> </td><td> synonym for backslash (<code class="literal">\</code>) to help reduce the need for backslash doubling </td></tr><tr><td> <code class="literal">\c</code><em class="replaceable"><code>X</code></em> </td><td> (where <em class="replaceable"><code>X</code></em> is any character) the character whose low-order 5 bits are the same as those of <em class="replaceable"><code>X</code></em>, and whose other bits are all zero </td></tr><tr><td> <code class="literal">\e</code> </td><td> the character whose collating-sequence name is <code class="literal">ESC</code>, or failing that, the character with octal value <code class="literal">033</code> </td></tr><tr><td> <code class="literal">\f</code> </td><td> form feed, as in C </td></tr><tr><td> <code class="literal">\n</code> </td><td> newline, as in C </td></tr><tr><td> <code class="literal">\r</code> </td><td> carriage return, as in C </td></tr><tr><td> <code class="literal">\t</code> </td><td> horizontal tab, as in C </td></tr><tr><td> <code class="literal">\u</code><em class="replaceable"><code>wxyz</code></em> </td><td> (where <em class="replaceable"><code>wxyz</code></em> is exactly four hexadecimal digits) the character whose hexadecimal value is <code class="literal">0x</code><em class="replaceable"><code>wxyz</code></em> </td></tr><tr><td> <code class="literal">\U</code><em class="replaceable"><code>stuvwxyz</code></em> </td><td> (where <em class="replaceable"><code>stuvwxyz</code></em> is exactly eight hexadecimal digits) the character whose hexadecimal value is <code class="literal">0x</code><em class="replaceable"><code>stuvwxyz</code></em> </td></tr><tr><td> <code class="literal">\v</code> </td><td> vertical tab, as in C </td></tr><tr><td> <code class="literal">\x</code><em class="replaceable"><code>hhh</code></em> </td><td> (where <em class="replaceable"><code>hhh</code></em> is any sequence of hexadecimal digits) the character whose hexadecimal value is <code class="literal">0x</code><em class="replaceable"><code>hhh</code></em> (a single character no matter how many hexadecimal digits are used) </td></tr><tr><td> <code class="literal">\0</code> </td><td> the character whose value is <code class="literal">0</code> (the null byte)</td></tr><tr><td> <code class="literal">\</code><em class="replaceable"><code>xy</code></em> </td><td> (where <em class="replaceable"><code>xy</code></em> is exactly two octal digits, and is not a <em class="firstterm">back reference</em>) the character whose octal value is <code class="literal">0</code><em class="replaceable"><code>xy</code></em> </td></tr><tr><td> <code class="literal">\</code><em class="replaceable"><code>xyz</code></em> </td><td> (where <em class="replaceable"><code>xyz</code></em> is exactly three octal digits, and is not a <em class="firstterm">back reference</em>) the character whose octal value is <code class="literal">0</code><em class="replaceable"><code>xyz</code></em> </td></tr></tbody></table></div></div><br class="table-break" /><p> Hexadecimal digits are <code class="literal">0</code>-<code class="literal">9</code>, <code class="literal">a</code>-<code class="literal">f</code>, and <code class="literal">A</code>-<code class="literal">F</code>. Octal digits are <code class="literal">0</code>-<code class="literal">7</code>. </p><p> Numeric character-entry escapes specifying values outside the ASCII range (0–127) have meanings dependent on the database encoding. When the encoding is UTF-8, escape values are equivalent to Unicode code points, for example <code class="literal">\u1234</code> means the character <code class="literal">U+1234</code>. For other multibyte encodings, character-entry escapes usually just specify the concatenation of the byte values for the character. If the escape value does not correspond to any legal character in the database encoding, no error will be raised, but it will never match any data. </p><p> The character-entry escapes are always taken as ordinary characters. For example, <code class="literal">\135</code> is <code class="literal">]</code> in ASCII, but <code class="literal">\135</code> does not terminate a bracket expression. </p><div class="table" id="POSIX-CLASS-SHORTHAND-ESCAPES-TABLE"><p class="title"><strong>Table 9.21. Regular Expression Class-Shorthand Escapes</strong></p><div class="table-contents"><table class="table" summary="Regular Expression Class-Shorthand Escapes" border="1"><colgroup><col /><col /></colgroup><thead><tr><th>Escape</th><th>Description</th></tr></thead><tbody><tr><td> <code class="literal">\d</code> </td><td> matches any digit, like <code class="literal">[[:digit:]]</code> </td></tr><tr><td> <code class="literal">\s</code> </td><td> matches any whitespace character, like <code class="literal">[[:space:]]</code> </td></tr><tr><td> <code class="literal">\w</code> </td><td> matches any word character, like <code class="literal">[[:word:]]</code> </td></tr><tr><td> <code class="literal">\D</code> </td><td> matches any non-digit, like <code class="literal">[^[:digit:]]</code> </td></tr><tr><td> <code class="literal">\S</code> </td><td> matches any non-whitespace character, like <code class="literal">[^[:space:]]</code> </td></tr><tr><td> <code class="literal">\W</code> </td><td> matches any non-word character, like <code class="literal">[^[:word:]]</code> </td></tr></tbody></table></div></div><br class="table-break" /><p> The class-shorthand escapes also work within bracket expressions, although the definitions shown above are not quite syntactically valid in that context. For example, <code class="literal">[a-c\d]</code> is equivalent to <code class="literal">[a-c[:digit:]]</code>. </p><div class="table" id="POSIX-CONSTRAINT-ESCAPES-TABLE"><p class="title"><strong>Table 9.22. Regular Expression Constraint Escapes</strong></p><div class="table-contents"><table class="table" summary="Regular Expression Constraint Escapes" border="1"><colgroup><col /><col /></colgroup><thead><tr><th>Escape</th><th>Description</th></tr></thead><tbody><tr><td> <code class="literal">\A</code> </td><td> matches only at the beginning of the string (see <a class="xref" href="functions-matching.html#POSIX-MATCHING-RULES" title="9.7.3.5. Regular Expression Matching Rules">Section 9.7.3.5</a> for how this differs from <code class="literal">^</code>) </td></tr><tr><td> <code class="literal">\m</code> </td><td> matches only at the beginning of a word </td></tr><tr><td> <code class="literal">\M</code> </td><td> matches only at the end of a word </td></tr><tr><td> <code class="literal">\y</code> </td><td> matches only at the beginning or end of a word </td></tr><tr><td> <code class="literal">\Y</code> </td><td> matches only at a point that is not the beginning or end of a word </td></tr><tr><td> <code class="literal">\Z</code> </td><td> matches only at the end of the string (see <a class="xref" href="functions-matching.html#POSIX-MATCHING-RULES" title="9.7.3.5. Regular Expression Matching Rules">Section 9.7.3.5</a> for how this differs from <code class="literal">$</code>) </td></tr></tbody></table></div></div><br class="table-break" /><p> A word is defined as in the specification of <code class="literal">[[:<:]]</code> and <code class="literal">[[:>:]]</code> above. Constraint escapes are illegal within bracket expressions. </p><div class="table" id="POSIX-CONSTRAINT-BACKREF-TABLE"><p class="title"><strong>Table 9.23. Regular Expression Back References</strong></p><div class="table-contents"><table class="table" summary="Regular Expression Back References" border="1"><colgroup><col /><col /></colgroup><thead><tr><th>Escape</th><th>Description</th></tr></thead><tbody><tr><td> <code class="literal">\</code><em class="replaceable"><code>m</code></em> </td><td> (where <em class="replaceable"><code>m</code></em> is a nonzero digit) a back reference to the <em class="replaceable"><code>m</code></em>'th subexpression </td></tr><tr><td> <code class="literal">\</code><em class="replaceable"><code>mnn</code></em> </td><td> (where <em class="replaceable"><code>m</code></em> is a nonzero digit, and <em class="replaceable"><code>nn</code></em> is some more digits, and the decimal value <em class="replaceable"><code>mnn</code></em> is not greater than the number of closing capturing parentheses seen so far) a back reference to the <em class="replaceable"><code>mnn</code></em>'th subexpression </td></tr></tbody></table></div></div><br class="table-break" /><div class="note"><h3 class="title">Note</h3><p> There is an inherent ambiguity between octal character-entry escapes and back references, which is resolved by the following heuristics, as hinted at above. A leading zero always indicates an octal escape. A single non-zero digit, not followed by another digit, is always taken as a back reference. A multi-digit sequence not starting with a zero is taken as a back reference if it comes after a suitable subexpression (i.e., the number is in the legal range for a back reference), and otherwise is taken as octal. </p></div></div><div class="sect3" id="POSIX-METASYNTAX"><div class="titlepage"><div><div><h4 class="title">9.7.3.4. Regular Expression Metasyntax <a href="#POSIX-METASYNTAX" class="id_link">#</a></h4></div></div></div><p> In addition to the main syntax described above, there are some special forms and miscellaneous syntactic facilities available. </p><p> An RE can begin with one of two special <em class="firstterm">director</em> prefixes. If an RE begins with <code class="literal">***:</code>, the rest of the RE is taken as an ARE. (This normally has no effect in <span class="productname">PostgreSQL</span>, since REs are assumed to be AREs; but it does have an effect if ERE or BRE mode had been specified by the <em class="replaceable"><code>flags</code></em> parameter to a regex function.) If an RE begins with <code class="literal">***=</code>, the rest of the RE is taken to be a literal string, with all characters considered ordinary characters. </p><p> An ARE can begin with <em class="firstterm">embedded options</em>: a sequence <code class="literal">(?</code><em class="replaceable"><code>xyz</code></em><code class="literal">)</code> (where <em class="replaceable"><code>xyz</code></em> is one or more alphabetic characters) specifies options affecting the rest of the RE. These options override any previously determined options — in particular, they can override the case-sensitivity behavior implied by a regex operator, or the <em class="replaceable"><code>flags</code></em> parameter to a regex function. The available option letters are shown in <a class="xref" href="functions-matching.html#POSIX-EMBEDDED-OPTIONS-TABLE" title="Table 9.24. ARE Embedded-Option Letters">Table 9.24</a>. Note that these same option letters are used in the <em class="replaceable"><code>flags</code></em> parameters of regex functions. </p><div class="table" id="POSIX-EMBEDDED-OPTIONS-TABLE"><p class="title"><strong>Table 9.24. ARE Embedded-Option Letters</strong></p><div class="table-contents"><table class="table" summary="ARE Embedded-Option Letters" border="1"><colgroup><col /><col /></colgroup><thead><tr><th>Option</th><th>Description</th></tr></thead><tbody><tr><td> <code class="literal">b</code> </td><td> rest of RE is a BRE </td></tr><tr><td> <code class="literal">c</code> </td><td> case-sensitive matching (overrides operator type) </td></tr><tr><td> <code class="literal">e</code> </td><td> rest of RE is an ERE </td></tr><tr><td> <code class="literal">i</code> </td><td> case-insensitive matching (see <a class="xref" href="functions-matching.html#POSIX-MATCHING-RULES" title="9.7.3.5. Regular Expression Matching Rules">Section 9.7.3.5</a>) (overrides operator type) </td></tr><tr><td> <code class="literal">m</code> </td><td> historical synonym for <code class="literal">n</code> </td></tr><tr><td> <code class="literal">n</code> </td><td> newline-sensitive matching (see <a class="xref" href="functions-matching.html#POSIX-MATCHING-RULES" title="9.7.3.5. Regular Expression Matching Rules">Section 9.7.3.5</a>) </td></tr><tr><td> <code class="literal">p</code> </td><td> partial newline-sensitive matching (see <a class="xref" href="functions-matching.html#POSIX-MATCHING-RULES" title="9.7.3.5. Regular Expression Matching Rules">Section 9.7.3.5</a>) </td></tr><tr><td> <code class="literal">q</code> </td><td> rest of RE is a literal (<span class="quote">“<span class="quote">quoted</span>”</span>) string, all ordinary characters </td></tr><tr><td> <code class="literal">s</code> </td><td> non-newline-sensitive matching (default) </td></tr><tr><td> <code class="literal">t</code> </td><td> tight syntax (default; see below) </td></tr><tr><td> <code class="literal">w</code> </td><td> inverse partial newline-sensitive (<span class="quote">“<span class="quote">weird</span>”</span>) matching (see <a class="xref" href="functions-matching.html#POSIX-MATCHING-RULES" title="9.7.3.5. Regular Expression Matching Rules">Section 9.7.3.5</a>) </td></tr><tr><td> <code class="literal">x</code> </td><td> expanded syntax (see below) </td></tr></tbody></table></div></div><br class="table-break" /><p> Embedded options take effect at the <code class="literal">)</code> terminating the sequence. They can appear only at the start of an ARE (after the <code class="literal">***:</code> director if any). </p><p> In addition to the usual (<em class="firstterm">tight</em>) RE syntax, in which all characters are significant, there is an <em class="firstterm">expanded</em> syntax, available by specifying the embedded <code class="literal">x</code> option. In the expanded syntax, white-space characters in the RE are ignored, as are all characters between a <code class="literal">#</code> and the following newline (or the end of the RE). This permits paragraphing and commenting a complex RE. There are three exceptions to that basic rule: </p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p> a white-space character or <code class="literal">#</code> preceded by <code class="literal">\</code> is retained </p></li><li class="listitem"><p> white space or <code class="literal">#</code> within a bracket expression is retained </p></li><li class="listitem"><p> white space and comments cannot appear within multi-character symbols, such as <code class="literal">(?:</code> </p></li></ul></div><p> For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the <em class="replaceable"><code>space</code></em> character class. </p><p> Finally, in an ARE, outside bracket expressions, the sequence <code class="literal">(?#</code><em class="replaceable"><code>ttt</code></em><code class="literal">)</code> (where <em class="replaceable"><code>ttt</code></em> is any text not containing a <code class="literal">)</code>) is a comment, completely ignored. Again, this is not allowed between the characters of multi-character symbols, like <code class="literal">(?:</code>. Such comments are more a historical artifact than a useful facility, and their use is deprecated; use the expanded syntax instead. </p><p> <span class="emphasis"><em>None</em></span> of these metasyntax extensions is available if an initial <code class="literal">***=</code> director has specified that the user's input be treated as a literal string rather than as an RE. </p></div><div class="sect3" id="POSIX-MATCHING-RULES"><div class="titlepage"><div><div><h4 class="title">9.7.3.5. Regular Expression Matching Rules <a href="#POSIX-MATCHING-RULES" class="id_link">#</a></h4></div></div></div><p> In the event that an RE could match more than one substring of a given string, the RE matches the one starting earliest in the string. If the RE could match more than one substring starting at that point, either the longest possible match or the shortest possible match will be taken, depending on whether the RE is <em class="firstterm">greedy</em> or <em class="firstterm">non-greedy</em>. </p><p> Whether an RE is greedy or not is determined by the following rules: </p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p> Most atoms, and all constraints, have no greediness attribute (because they cannot match variable amounts of text anyway). </p></li><li class="listitem"><p> Adding parentheses around an RE does not change its greediness. </p></li><li class="listitem"><p> A quantified atom with a fixed-repetition quantifier (<code class="literal">{</code><em class="replaceable"><code>m</code></em><code class="literal">}</code> or <code class="literal">{</code><em class="replaceable"><code>m</code></em><code class="literal">}?</code>) has the same greediness (possibly none) as the atom itself. </p></li><li class="listitem"><p> A quantified atom with other normal quantifiers (including <code class="literal">{</code><em class="replaceable"><code>m</code></em><code class="literal">,</code><em class="replaceable"><code>n</code></em><code class="literal">}</code> with <em class="replaceable"><code>m</code></em> equal to <em class="replaceable"><code>n</code></em>) is greedy (prefers longest match). </p></li><li class="listitem"><p> A quantified atom with a non-greedy quantifier (including <code class="literal">{</code><em class="replaceable"><code>m</code></em><code class="literal">,</code><em class="replaceable"><code>n</code></em><code class="literal">}?</code> with <em class="replaceable"><code>m</code></em> equal to <em class="replaceable"><code>n</code></em>) is non-greedy (prefers shortest match). </p></li><li class="listitem"><p> A branch — that is, an RE that has no top-level <code class="literal">|</code> operator — has the same greediness as the first quantified atom in it that has a greediness attribute. </p></li><li class="listitem"><p> An RE consisting of two or more branches connected by the <code class="literal">|</code> operator is always greedy. </p></li></ul></div><p> </p><p> The above rules associate greediness attributes not only with individual quantified atoms, but with branches and entire REs that contain quantified atoms. What that means is that the matching is done in such a way that the branch, or whole RE, matches the longest or shortest possible substring <span class="emphasis"><em>as a whole</em></span>. Once the length of the entire match is determined, the part of it that matches any particular subexpression is determined on the basis of the greediness attribute of that subexpression, with subexpressions starting earlier in the RE taking priority over ones starting later. </p><p> An example of what this means: </p><pre class="screen"> SELECT SUBSTRING('XY1234Z', 'Y*([0-9]{1,3})'); <em class="lineannotation"><span class="lineannotation">Result: </span></em><code class="computeroutput">123</code> SELECT SUBSTRING('XY1234Z', 'Y*?([0-9]{1,3})'); <em class="lineannotation"><span class="lineannotation">Result: </span></em><code class="computeroutput">1</code> </pre><p> In the first case, the RE as a whole is greedy because <code class="literal">Y*</code> is greedy. It can match beginning at the <code class="literal">Y</code>, and it matches the longest possible string starting there, i.e., <code class="literal">Y123</code>. The output is the parenthesized part of that, or <code class="literal">123</code>. In the second case, the RE as a whole is non-greedy because <code class="literal">Y*?</code> is non-greedy. It can match beginning at the <code class="literal">Y</code>, and it matches the shortest possible string starting there, i.e., <code class="literal">Y1</code>. The subexpression <code class="literal">[0-9]{1,3}</code> is greedy but it cannot change the decision as to the overall match length; so it is forced to match just <code class="literal">1</code>. </p><p> In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is either as long as possible or as short as possible, according to the attribute assigned to the whole RE. The attributes assigned to the subexpressions only affect how much of that match they are allowed to <span class="quote">“<span class="quote">eat</span>”</span> relative to each other. </p><p> The quantifiers <code class="literal">{1,1}</code> and <code class="literal">{1,1}?</code> can be used to force greediness or non-greediness, respectively, on a subexpression or a whole RE. This is useful when you need the whole RE to have a greediness attribute different from what's deduced from its elements. As an example, suppose that we are trying to separate a string containing some digits into the digits and the parts before and after them. We might try to do that like this: </p><pre class="screen"> SELECT regexp_match('abc01234xyz', '(.*)(\d+)(.*)'); <em class="lineannotation"><span class="lineannotation">Result: </span></em><code class="computeroutput">{abc0123,4,xyz}</code> </pre><p> That didn't work: the first <code class="literal">.*</code> is greedy so it <span class="quote">“<span class="quote">eats</span>”</span> as much as it can, leaving the <code class="literal">\d+</code> to match at the last possible place, the last digit. We might try to fix that by making it non-greedy: </p><pre class="screen"> SELECT regexp_match('abc01234xyz', '(.*?)(\d+)(.*)'); <em class="lineannotation"><span class="lineannotation">Result: </span></em><code class="computeroutput">{abc,0,""}</code> </pre><p> That didn't work either, because now the RE as a whole is non-greedy and so it ends the overall match as soon as possible. We can get what we want by forcing the RE as a whole to be greedy: </p><pre class="screen"> SELECT regexp_match('abc01234xyz', '(?:(.*?)(\d+)(.*)){1,1}'); <em class="lineannotation"><span class="lineannotation">Result: </span></em><code class="computeroutput">{abc,01234,xyz}</code> </pre><p> Controlling the RE's overall greediness separately from its components' greediness allows great flexibility in handling variable-length patterns. </p><p> When deciding what is a longer or shorter match, match lengths are measured in characters, not collating elements. An empty string is considered longer than no match at all. For example: <code class="literal">bb*</code> matches the three middle characters of <code class="literal">abbbc</code>; <code class="literal">(week|wee)(night|knights)</code> matches all ten characters of <code class="literal">weeknights</code>; when <code class="literal">(.*).*</code> is matched against <code class="literal">abc</code> the parenthesized subexpression matches all three characters; and when <code class="literal">(a*)*</code> is matched against <code class="literal">bc</code> both the whole RE and the parenthesized subexpression match an empty string. </p><p> If case-independent matching is specified, the effect is much as if all case distinctions had vanished from the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside a bracket expression, it is effectively transformed into a bracket expression containing both cases, e.g., <code class="literal">x</code> becomes <code class="literal">[xX]</code>. When it appears inside a bracket expression, all case counterparts of it are added to the bracket expression, e.g., <code class="literal">[x]</code> becomes <code class="literal">[xX]</code> and <code class="literal">[^x]</code> becomes <code class="literal">[^xX]</code>. </p><p> If newline-sensitive matching is specified, <code class="literal">.</code> and bracket expressions using <code class="literal">^</code> will never match the newline character (so that matches will not cross lines unless the RE explicitly includes a newline) and <code class="literal">^</code> and <code class="literal">$</code> will match the empty string after and before a newline respectively, in addition to matching at beginning and end of string respectively. But the ARE escapes <code class="literal">\A</code> and <code class="literal">\Z</code> continue to match beginning or end of string <span class="emphasis"><em>only</em></span>. Also, the character class shorthands <code class="literal">\D</code> and <code class="literal">\W</code> will match a newline regardless of this mode. (Before <span class="productname">PostgreSQL</span> 14, they did not match newlines when in newline-sensitive mode. Write <code class="literal">[^[:digit:]]</code> or <code class="literal">[^[:word:]]</code> to get the old behavior.) </p><p> If partial newline-sensitive matching is specified, this affects <code class="literal">.</code> and bracket expressions as with newline-sensitive matching, but not <code class="literal">^</code> and <code class="literal">$</code>. </p><p> If inverse partial newline-sensitive matching is specified, this affects <code class="literal">^</code> and <code class="literal">$</code> as with newline-sensitive matching, but not <code class="literal">.</code> and bracket expressions. This isn't very useful but is provided for symmetry. </p></div><div class="sect3" id="POSIX-LIMITS-COMPATIBILITY"><div class="titlepage"><div><div><h4 class="title">9.7.3.6. Limits and Compatibility <a href="#POSIX-LIMITS-COMPATIBILITY" class="id_link">#</a></h4></div></div></div><p> No particular limit is imposed on the length of REs in this implementation. However, programs intended to be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant implementation can refuse to accept such REs. </p><p> The only feature of AREs that is actually incompatible with POSIX EREs is that <code class="literal">\</code> does not lose its special significance inside bracket expressions. All other ARE features use syntax which is illegal or has undefined or unspecified effects in POSIX EREs; the <code class="literal">***</code> syntax of directors likewise is outside the POSIX syntax for both BREs and EREs. </p><p> Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them up, and a few Perl extensions are not present. Incompatibilities of note include <code class="literal">\b</code>, <code class="literal">\B</code>, the lack of special treatment for a trailing newline, the addition of complemented bracket expressions to the things affected by newline-sensitive matching, the restrictions on parentheses and back references in lookahead/lookbehind constraints, and the longest/shortest-match (rather than first-match) matching semantics. </p></div><div class="sect3" id="POSIX-BASIC-REGEXES"><div class="titlepage"><div><div><h4 class="title">9.7.3.7. Basic Regular Expressions <a href="#POSIX-BASIC-REGEXES" class="id_link">#</a></h4></div></div></div><p> BREs differ from EREs in several respects. In BREs, <code class="literal">|</code>, <code class="literal">+</code>, and <code class="literal">?</code> are ordinary characters and there is no equivalent for their functionality. The delimiters for bounds are <code class="literal">\{</code> and <code class="literal">\}</code>, with <code class="literal">{</code> and <code class="literal">}</code> by themselves ordinary characters. The parentheses for nested subexpressions are <code class="literal">\(</code> and <code class="literal">\)</code>, with <code class="literal">(</code> and <code class="literal">)</code> by themselves ordinary characters. <code class="literal">^</code> is an ordinary character except at the beginning of the RE or the beginning of a parenthesized subexpression, <code class="literal">$</code> is an ordinary character except at the end of the RE or the end of a parenthesized subexpression, and <code class="literal">*</code> is an ordinary character if it appears at the beginning of the RE or the beginning of a parenthesized subexpression (after a possible leading <code class="literal">^</code>). Finally, single-digit back references are available, and <code class="literal">\<</code> and <code class="literal">\></code> are synonyms for <code class="literal">[[:<:]]</code> and <code class="literal">[[:>:]]</code> respectively; no other escapes are available in BREs. </p></div><div class="sect3" id="POSIX-VS-XQUERY"><div class="titlepage"><div><div><h4 class="title">9.7.3.8. Differences from SQL Standard and XQuery <a href="#POSIX-VS-XQUERY" class="id_link">#</a></h4></div></div></div><a id="id-1.5.8.13.9.48.2" class="indexterm"></a><a id="id-1.5.8.13.9.48.3" class="indexterm"></a><a id="id-1.5.8.13.9.48.4" class="indexterm"></a><a id="id-1.5.8.13.9.48.5" class="indexterm"></a><a id="id-1.5.8.13.9.48.6" class="indexterm"></a><a id="id-1.5.8.13.9.48.7" class="indexterm"></a><p> Since SQL:2008, the SQL standard includes regular expression operators and functions that performs pattern matching according to the XQuery regular expression standard: </p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p><code class="literal">LIKE_REGEX</code></p></li><li class="listitem"><p><code class="literal">OCCURRENCES_REGEX</code></p></li><li class="listitem"><p><code class="literal">POSITION_REGEX</code></p></li><li class="listitem"><p><code class="literal">SUBSTRING_REGEX</code></p></li><li class="listitem"><p><code class="literal">TRANSLATE_REGEX</code></p></li></ul></div><p> <span class="productname">PostgreSQL</span> does not currently implement these operators and functions. You can get approximately equivalent functionality in each case as shown in <a class="xref" href="functions-matching.html#FUNCTIONS-REGEXP-SQL-TABLE" title="Table 9.25. Regular Expression Functions Equivalencies">Table 9.25</a>. (Various optional clauses on both sides have been omitted in this table.) </p><div class="table" id="FUNCTIONS-REGEXP-SQL-TABLE"><p class="title"><strong>Table 9.25. Regular Expression Functions Equivalencies</strong></p><div class="table-contents"><table class="table" summary="Regular Expression Functions Equivalencies" border="1"><colgroup><col /><col /></colgroup><thead><tr><th>SQL standard</th><th><span class="productname">PostgreSQL</span></th></tr></thead><tbody><tr><td><code class="literal"><em class="replaceable"><code>string</code></em> LIKE_REGEX <em class="replaceable"><code>pattern</code></em></code></td><td><code class="literal">regexp_like(<em class="replaceable"><code>string</code></em>, <em class="replaceable"><code>pattern</code></em>)</code> or <code class="literal"><em class="replaceable"><code>string</code></em> ~ <em class="replaceable"><code>pattern</code></em></code></td></tr><tr><td><code class="literal">OCCURRENCES_REGEX(<em class="replaceable"><code>pattern</code></em> IN <em class="replaceable"><code>string</code></em>)</code></td><td><code class="literal">regexp_count(<em class="replaceable"><code>string</code></em>, <em class="replaceable"><code>pattern</code></em>)</code></td></tr><tr><td><code class="literal">POSITION_REGEX(<em class="replaceable"><code>pattern</code></em> IN <em class="replaceable"><code>string</code></em>)</code></td><td><code class="literal">regexp_instr(<em class="replaceable"><code>string</code></em>, <em class="replaceable"><code>pattern</code></em>)</code></td></tr><tr><td><code class="literal">SUBSTRING_REGEX(<em class="replaceable"><code>pattern</code></em> IN <em class="replaceable"><code>string</code></em>)</code></td><td><code class="literal">regexp_substr(<em class="replaceable"><code>string</code></em>, <em class="replaceable"><code>pattern</code></em>)</code></td></tr><tr><td><code class="literal">TRANSLATE_REGEX(<em class="replaceable"><code>pattern</code></em> IN <em class="replaceable"><code>string</code></em> WITH <em class="replaceable"><code>replacement</code></em>)</code></td><td><code class="literal">regexp_replace(<em class="replaceable"><code>string</code></em>, <em class="replaceable"><code>pattern</code></em>, <em class="replaceable"><code>replacement</code></em>)</code></td></tr></tbody></table></div></div><br class="table-break" /><p> Regular expression functions similar to those provided by PostgreSQL are also available in a number of other SQL implementations, whereas the SQL-standard functions are not as widely implemented. Some of the details of the regular expression syntax will likely differ in each implementation. </p><p> The SQL-standard operators and functions use XQuery regular expressions, which are quite close to the ARE syntax described above. Notable differences between the existing POSIX-based regular-expression feature and XQuery regular expressions include: </p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p> XQuery character class subtraction is not supported. An example of this feature is using the following to match only English consonants: <code class="literal">[a-z-[aeiou]]</code>. </p></li><li class="listitem"><p> XQuery character class shorthands <code class="literal">\c</code>, <code class="literal">\C</code>, <code class="literal">\i</code>, and <code class="literal">\I</code> are not supported. </p></li><li class="listitem"><p> XQuery character class elements using <code class="literal">\p{UnicodeProperty}</code> or the inverse <code class="literal">\P{UnicodeProperty}</code> are not supported. </p></li><li class="listitem"><p> POSIX interprets character classes such as <code class="literal">\w</code> (see <a class="xref" href="functions-matching.html#POSIX-CLASS-SHORTHAND-ESCAPES-TABLE" title="Table 9.21. Regular Expression Class-Shorthand Escapes">Table 9.21</a>) according to the prevailing locale (which you can control by attaching a <code class="literal">COLLATE</code> clause to the operator or function). XQuery specifies these classes by reference to Unicode character properties, so equivalent behavior is obtained only with a locale that follows the Unicode rules. </p></li><li class="listitem"><p> The SQL standard (not XQuery itself) attempts to cater for more variants of <span class="quote">“<span class="quote">newline</span>”</span> than POSIX does. The newline-sensitive matching options described above consider only ASCII NL (<code class="literal">\n</code>) to be a newline, but SQL would have us treat CR (<code class="literal">\r</code>), CRLF (<code class="literal">\r\n</code>) (a Windows-style newline), and some Unicode-only characters like LINE SEPARATOR (U+2028) as newlines as well. Notably, <code class="literal">.</code> and <code class="literal">\s</code> should count <code class="literal">\r\n</code> as one character not two according to SQL. </p></li><li class="listitem"><p> Of the character-entry escapes described in <a class="xref" href="functions-matching.html#POSIX-CHARACTER-ENTRY-ESCAPES-TABLE" title="Table 9.20. Regular Expression Character-Entry Escapes">Table 9.20</a>, XQuery supports only <code class="literal">\n</code>, <code class="literal">\r</code>, and <code class="literal">\t</code>. </p></li><li class="listitem"><p> XQuery does not support the <code class="literal">[:<em class="replaceable"><code>name</code></em>:]</code> syntax for character classes within bracket expressions. </p></li><li class="listitem"><p> XQuery does not have lookahead or lookbehind constraints, nor any of the constraint escapes described in <a class="xref" href="functions-matching.html#POSIX-CONSTRAINT-ESCAPES-TABLE" title="Table 9.22. Regular Expression Constraint Escapes">Table 9.22</a>. </p></li><li class="listitem"><p> The metasyntax forms described in <a class="xref" href="functions-matching.html#POSIX-METASYNTAX" title="9.7.3.4. Regular Expression Metasyntax">Section 9.7.3.4</a> do not exist in XQuery. </p></li><li class="listitem"><p> The regular expression flag letters defined by XQuery are related to but not the same as the option letters for POSIX (<a class="xref" href="functions-matching.html#POSIX-EMBEDDED-OPTIONS-TABLE" title="Table 9.24. ARE Embedded-Option Letters">Table 9.24</a>). While the <code class="literal">i</code> and <code class="literal">q</code> options behave the same, others do not: </p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: circle; "><li class="listitem"><p> XQuery's <code class="literal">s</code> (allow dot to match newline) and <code class="literal">m</code> (allow <code class="literal">^</code> and <code class="literal">$</code> to match at newlines) flags provide access to the same behaviors as POSIX's <code class="literal">n</code>, <code class="literal">p</code> and <code class="literal">w</code> flags, but they do <span class="emphasis"><em>not</em></span> match the behavior of POSIX's <code class="literal">s</code> and <code class="literal">m</code> flags. Note in particular that dot-matches-newline is the default behavior in POSIX but not XQuery. </p></li><li class="listitem"><p> XQuery's <code class="literal">x</code> (ignore whitespace in pattern) flag is noticeably different from POSIX's expanded-mode flag. POSIX's <code class="literal">x</code> flag also allows <code class="literal">#</code> to begin a comment in the pattern, and POSIX will not ignore a whitespace character after a backslash. </p></li></ul></div><p> </p></li></ul></div><p> </p></div></div></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="functions-bitstring.html" title="9.6. Bit String Functions and Operators">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="functions.html" title="Chapter 9. Functions and Operators">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="functions-formatting.html" title="9.8. Data Type Formatting Functions">Next</a></td></tr><tr><td width="40%" align="left" valign="top">9.6. Bit String Functions and Operators </td><td width="20%" align="center"><a accesskey="h" href="index.html" title="PostgreSQL 16.3 Documentation">Home</a></td><td width="40%" align="right" valign="top"> 9.8. Data Type Formatting Functions</td></tr></table></div></body></html>