????
Current Path : C:/opt/pgsql/doc/postgresql/html/ |
Current File : C:/opt/pgsql/doc/postgresql/html/multivariate-statistics-examples.html |
<?xml version="1.0" encoding="UTF-8" standalone="no"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>76.2. Multivariate Statistics Examples</title><link rel="stylesheet" type="text/css" href="stylesheet.css" /><link rev="made" href="pgsql-docs@lists.postgresql.org" /><meta name="generator" content="DocBook XSL Stylesheets Vsnapshot" /><link rel="prev" href="row-estimation-examples.html" title="76.1. Row Estimation Examples" /><link rel="next" href="planner-stats-security.html" title="76.3. Planner Statistics and Security" /></head><body id="docContent" class="container-fluid col-10"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="5" align="center">76.2. Multivariate Statistics Examples</th></tr><tr><td width="10%" align="left"><a accesskey="p" href="row-estimation-examples.html" title="76.1. Row Estimation Examples">Prev</a> </td><td width="10%" align="left"><a accesskey="u" href="planner-stats-details.html" title="Chapter 76. How the Planner Uses Statistics">Up</a></td><th width="60%" align="center">Chapter 76. How the Planner Uses Statistics</th><td width="10%" align="right"><a accesskey="h" href="index.html" title="PostgreSQL 16.3 Documentation">Home</a></td><td width="10%" align="right"> <a accesskey="n" href="planner-stats-security.html" title="76.3. Planner Statistics and Security">Next</a></td></tr></table><hr /></div><div class="sect1" id="MULTIVARIATE-STATISTICS-EXAMPLES"><div class="titlepage"><div><div><h2 class="title" style="clear: both">76.2. Multivariate Statistics Examples <a href="#MULTIVARIATE-STATISTICS-EXAMPLES" class="id_link">#</a></h2></div></div></div><div class="toc"><dl class="toc"><dt><span class="sect2"><a href="multivariate-statistics-examples.html#FUNCTIONAL-DEPENDENCIES">76.2.1. Functional Dependencies</a></span></dt><dt><span class="sect2"><a href="multivariate-statistics-examples.html#MULTIVARIATE-NDISTINCT-COUNTS">76.2.2. Multivariate N-Distinct Counts</a></span></dt><dt><span class="sect2"><a href="multivariate-statistics-examples.html#MCV-LISTS">76.2.3. MCV Lists</a></span></dt></dl></div><a id="id-1.10.27.5.2" class="indexterm"></a><div class="sect2" id="FUNCTIONAL-DEPENDENCIES"><div class="titlepage"><div><div><h3 class="title">76.2.1. Functional Dependencies <a href="#FUNCTIONAL-DEPENDENCIES" class="id_link">#</a></h3></div></div></div><p> Multivariate correlation can be demonstrated with a very simple data set — a table with two columns, both containing the same values: </p><pre class="programlisting"> CREATE TABLE t (a INT, b INT); INSERT INTO t SELECT i % 100, i % 100 FROM generate_series(1, 10000) s(i); ANALYZE t; </pre><p> As explained in <a class="xref" href="planner-stats.html" title="14.2. Statistics Used by the Planner">Section 14.2</a>, the planner can determine cardinality of <code class="structname">t</code> using the number of pages and rows obtained from <code class="structname">pg_class</code>: </p><pre class="programlisting"> SELECT relpages, reltuples FROM pg_class WHERE relname = 't'; relpages | reltuples ----------+----------- 45 | 10000 </pre><p> The data distribution is very simple; there are only 100 distinct values in each column, uniformly distributed. </p><p> The following example shows the result of estimating a <code class="literal">WHERE</code> condition on the <code class="structfield">a</code> column: </p><pre class="programlisting"> EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1; QUERY PLAN ------------------------------------------------------------------------------- Seq Scan on t (cost=0.00..170.00 rows=100 width=8) (actual rows=100 loops=1) Filter: (a = 1) Rows Removed by Filter: 9900 </pre><p> The planner examines the condition and determines the selectivity of this clause to be 1%. By comparing this estimate and the actual number of rows, we see that the estimate is very accurate (in fact exact, as the table is very small). Changing the <code class="literal">WHERE</code> condition to use the <code class="structfield">b</code> column, an identical plan is generated. But observe what happens if we apply the same condition on both columns, combining them with <code class="literal">AND</code>: </p><pre class="programlisting"> EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1 AND b = 1; QUERY PLAN ----------------------------------------------------------------------------- Seq Scan on t (cost=0.00..195.00 rows=1 width=8) (actual rows=100 loops=1) Filter: ((a = 1) AND (b = 1)) Rows Removed by Filter: 9900 </pre><p> The planner estimates the selectivity for each condition individually, arriving at the same 1% estimates as above. Then it assumes that the conditions are independent, and so it multiplies their selectivities, producing a final selectivity estimate of just 0.01%. This is a significant underestimate, as the actual number of rows matching the conditions (100) is two orders of magnitude higher. </p><p> This problem can be fixed by creating a statistics object that directs <code class="command">ANALYZE</code> to calculate functional-dependency multivariate statistics on the two columns: </p><pre class="programlisting"> CREATE STATISTICS stts (dependencies) ON a, b FROM t; ANALYZE t; EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1 AND b = 1; QUERY PLAN ------------------------------------------------------------------------------- Seq Scan on t (cost=0.00..195.00 rows=100 width=8) (actual rows=100 loops=1) Filter: ((a = 1) AND (b = 1)) Rows Removed by Filter: 9900 </pre><p> </p></div><div class="sect2" id="MULTIVARIATE-NDISTINCT-COUNTS"><div class="titlepage"><div><div><h3 class="title">76.2.2. Multivariate N-Distinct Counts <a href="#MULTIVARIATE-NDISTINCT-COUNTS" class="id_link">#</a></h3></div></div></div><p> A similar problem occurs with estimation of the cardinality of sets of multiple columns, such as the number of groups that would be generated by a <code class="command">GROUP BY</code> clause. When <code class="command">GROUP BY</code> lists a single column, the n-distinct estimate (which is visible as the estimated number of rows returned by the HashAggregate node) is very accurate: </p><pre class="programlisting"> EXPLAIN (ANALYZE, TIMING OFF) SELECT COUNT(*) FROM t GROUP BY a; QUERY PLAN ----------------------------------------------------------------------------------------- HashAggregate (cost=195.00..196.00 rows=100 width=12) (actual rows=100 loops=1) Group Key: a -> Seq Scan on t (cost=0.00..145.00 rows=10000 width=4) (actual rows=10000 loops=1) </pre><p> But without multivariate statistics, the estimate for the number of groups in a query with two columns in <code class="command">GROUP BY</code>, as in the following example, is off by an order of magnitude: </p><pre class="programlisting"> EXPLAIN (ANALYZE, TIMING OFF) SELECT COUNT(*) FROM t GROUP BY a, b; QUERY PLAN -------------------------------------------------------------------------------------------- HashAggregate (cost=220.00..230.00 rows=1000 width=16) (actual rows=100 loops=1) Group Key: a, b -> Seq Scan on t (cost=0.00..145.00 rows=10000 width=8) (actual rows=10000 loops=1) </pre><p> By redefining the statistics object to include n-distinct counts for the two columns, the estimate is much improved: </p><pre class="programlisting"> DROP STATISTICS stts; CREATE STATISTICS stts (dependencies, ndistinct) ON a, b FROM t; ANALYZE t; EXPLAIN (ANALYZE, TIMING OFF) SELECT COUNT(*) FROM t GROUP BY a, b; QUERY PLAN -------------------------------------------------------------------------------------------- HashAggregate (cost=220.00..221.00 rows=100 width=16) (actual rows=100 loops=1) Group Key: a, b -> Seq Scan on t (cost=0.00..145.00 rows=10000 width=8) (actual rows=10000 loops=1) </pre><p> </p></div><div class="sect2" id="MCV-LISTS"><div class="titlepage"><div><div><h3 class="title">76.2.3. MCV Lists <a href="#MCV-LISTS" class="id_link">#</a></h3></div></div></div><p> As explained in <a class="xref" href="multivariate-statistics-examples.html#FUNCTIONAL-DEPENDENCIES" title="76.2.1. Functional Dependencies">Section 76.2.1</a>, functional dependencies are very cheap and efficient type of statistics, but their main limitation is their global nature (only tracking dependencies at the column level, not between individual column values). </p><p> This section introduces multivariate variant of <acronym class="acronym">MCV</acronym> (most-common values) lists, a straightforward extension of the per-column statistics described in <a class="xref" href="row-estimation-examples.html" title="76.1. Row Estimation Examples">Section 76.1</a>. These statistics address the limitation by storing individual values, but it is naturally more expensive, both in terms of building the statistics in <code class="command">ANALYZE</code>, storage and planning time. </p><p> Let's look at the query from <a class="xref" href="multivariate-statistics-examples.html#FUNCTIONAL-DEPENDENCIES" title="76.2.1. Functional Dependencies">Section 76.2.1</a> again, but this time with a <acronym class="acronym">MCV</acronym> list created on the same set of columns (be sure to drop the functional dependencies, to make sure the planner uses the newly created statistics). </p><pre class="programlisting"> DROP STATISTICS stts; CREATE STATISTICS stts2 (mcv) ON a, b FROM t; ANALYZE t; EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1 AND b = 1; QUERY PLAN ------------------------------------------------------------------------------- Seq Scan on t (cost=0.00..195.00 rows=100 width=8) (actual rows=100 loops=1) Filter: ((a = 1) AND (b = 1)) Rows Removed by Filter: 9900 </pre><p> The estimate is as accurate as with the functional dependencies, mostly thanks to the table being fairly small and having a simple distribution with a low number of distinct values. Before looking at the second query, which was not handled by functional dependencies particularly well, let's inspect the <acronym class="acronym">MCV</acronym> list a bit. </p><p> Inspecting the <acronym class="acronym">MCV</acronym> list is possible using <code class="function">pg_mcv_list_items</code> set-returning function. </p><pre class="programlisting"> SELECT m.* FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid), pg_mcv_list_items(stxdmcv) m WHERE stxname = 'stts2'; index | values | nulls | frequency | base_frequency -------+----------+-------+-----------+---------------- 0 | {0, 0} | {f,f} | 0.01 | 0.0001 1 | {1, 1} | {f,f} | 0.01 | 0.0001 ... 49 | {49, 49} | {f,f} | 0.01 | 0.0001 50 | {50, 50} | {f,f} | 0.01 | 0.0001 ... 97 | {97, 97} | {f,f} | 0.01 | 0.0001 98 | {98, 98} | {f,f} | 0.01 | 0.0001 99 | {99, 99} | {f,f} | 0.01 | 0.0001 (100 rows) </pre><p> This confirms there are 100 distinct combinations in the two columns, and all of them are about equally likely (1% frequency for each one). The base frequency is the frequency computed from per-column statistics, as if there were no multi-column statistics. Had there been any null values in either of the columns, this would be identified in the <code class="structfield">nulls</code> column. </p><p> When estimating the selectivity, the planner applies all the conditions on items in the <acronym class="acronym">MCV</acronym> list, and then sums the frequencies of the matching ones. See <code class="function">mcv_clauselist_selectivity</code> in <code class="filename">src/backend/statistics/mcv.c</code> for details. </p><p> Compared to functional dependencies, <acronym class="acronym">MCV</acronym> lists have two major advantages. Firstly, the list stores actual values, making it possible to decide which combinations are compatible. </p><pre class="programlisting"> EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1 AND b = 10; QUERY PLAN --------------------------------------------------------------------------- Seq Scan on t (cost=0.00..195.00 rows=1 width=8) (actual rows=0 loops=1) Filter: ((a = 1) AND (b = 10)) Rows Removed by Filter: 10000 </pre><p> Secondly, <acronym class="acronym">MCV</acronym> lists handle a wider range of clause types, not just equality clauses like functional dependencies. For example, consider the following range query for the same table: </p><pre class="programlisting"> EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a <= 49 AND b > 49; QUERY PLAN --------------------------------------------------------------------------- Seq Scan on t (cost=0.00..195.00 rows=1 width=8) (actual rows=0 loops=1) Filter: ((a <= 49) AND (b > 49)) Rows Removed by Filter: 10000 </pre><p> </p></div></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="row-estimation-examples.html" title="76.1. Row Estimation Examples">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="planner-stats-details.html" title="Chapter 76. How the Planner Uses Statistics">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="planner-stats-security.html" title="76.3. Planner Statistics and Security">Next</a></td></tr><tr><td width="40%" align="left" valign="top">76.1. Row Estimation Examples </td><td width="20%" align="center"><a accesskey="h" href="index.html" title="PostgreSQL 16.3 Documentation">Home</a></td><td width="40%" align="right" valign="top"> 76.3. Planner Statistics and Security</td></tr></table></div></body></html>