????
Current Path : C:/opt/pgsql/doc/postgresql/html/ |
Current File : C:/opt/pgsql/doc/postgresql/html/plpython-database.html |
<?xml version="1.0" encoding="UTF-8" standalone="no"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>46.6. Database Access</title><link rel="stylesheet" type="text/css" href="stylesheet.css" /><link rev="made" href="pgsql-docs@lists.postgresql.org" /><meta name="generator" content="DocBook XSL Stylesheets Vsnapshot" /><link rel="prev" href="plpython-trigger.html" title="46.5. Trigger Functions" /><link rel="next" href="plpython-subtransaction.html" title="46.7. Explicit Subtransactions" /></head><body id="docContent" class="container-fluid col-10"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="5" align="center">46.6. Database Access</th></tr><tr><td width="10%" align="left"><a accesskey="p" href="plpython-trigger.html" title="46.5. Trigger Functions">Prev</a> </td><td width="10%" align="left"><a accesskey="u" href="plpython.html" title="Chapter 46. PL/Python — Python Procedural Language">Up</a></td><th width="60%" align="center">Chapter 46. PL/Python — Python Procedural Language</th><td width="10%" align="right"><a accesskey="h" href="index.html" title="PostgreSQL 16.3 Documentation">Home</a></td><td width="10%" align="right"> <a accesskey="n" href="plpython-subtransaction.html" title="46.7. Explicit Subtransactions">Next</a></td></tr></table><hr /></div><div class="sect1" id="PLPYTHON-DATABASE"><div class="titlepage"><div><div><h2 class="title" style="clear: both">46.6. Database Access <a href="#PLPYTHON-DATABASE" class="id_link">#</a></h2></div></div></div><div class="toc"><dl class="toc"><dt><span class="sect2"><a href="plpython-database.html#PLPYTHON-DATABASE-ACCESS-FUNCS">46.6.1. Database Access Functions</a></span></dt><dt><span class="sect2"><a href="plpython-database.html#PLPYTHON-TRAPPING">46.6.2. Trapping Errors</a></span></dt></dl></div><p> The PL/Python language module automatically imports a Python module called <code class="literal">plpy</code>. The functions and constants in this module are available to you in the Python code as <code class="literal">plpy.<em class="replaceable"><code>foo</code></em></code>. </p><div class="sect2" id="PLPYTHON-DATABASE-ACCESS-FUNCS"><div class="titlepage"><div><div><h3 class="title">46.6.1. Database Access Functions <a href="#PLPYTHON-DATABASE-ACCESS-FUNCS" class="id_link">#</a></h3></div></div></div><p> The <code class="literal">plpy</code> module provides several functions to execute database commands: </p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><code class="literal">plpy.<code class="function">execute</code>(<em class="replaceable"><code>query</code></em> [, <em class="replaceable"><code>limit</code></em>])</code></span></dt><dd><p> Calling <code class="function">plpy.execute</code> with a query string and an optional row limit argument causes that query to be run and the result to be returned in a result object. </p><p> If <em class="replaceable"><code>limit</code></em> is specified and is greater than zero, then <code class="function">plpy.execute</code> retrieves at most <em class="replaceable"><code>limit</code></em> rows, much as if the query included a <code class="literal">LIMIT</code> clause. Omitting <em class="replaceable"><code>limit</code></em> or specifying it as zero results in no row limit. </p><p> The result object emulates a list or dictionary object. The result object can be accessed by row number and column name. For example: </p><pre class="programlisting"> rv = plpy.execute("SELECT * FROM my_table", 5) </pre><p> returns up to 5 rows from <code class="literal">my_table</code>. If <code class="literal">my_table</code> has a column <code class="literal">my_column</code>, it would be accessed as: </p><pre class="programlisting"> foo = rv[i]["my_column"] </pre><p> The number of rows returned can be obtained using the built-in <code class="function">len</code> function. </p><p> The result object has these additional methods: </p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><code class="literal"><code class="function">nrows</code>()</code></span></dt><dd><p> Returns the number of rows processed by the command. Note that this is not necessarily the same as the number of rows returned. For example, an <code class="command">UPDATE</code> command will set this value but won't return any rows (unless <code class="literal">RETURNING</code> is used). </p></dd><dt><span class="term"><code class="literal"><code class="function">status</code>()</code></span></dt><dd><p> The <code class="function">SPI_execute()</code> return value. </p></dd><dt><span class="term"><code class="literal"><code class="function">colnames</code>()</code><br /></span><span class="term"><code class="literal"><code class="function">coltypes</code>()</code><br /></span><span class="term"><code class="literal"><code class="function">coltypmods</code>()</code></span></dt><dd><p> Return a list of column names, list of column type OIDs, and list of type-specific type modifiers for the columns, respectively. </p><p> These methods raise an exception when called on a result object from a command that did not produce a result set, e.g., <code class="command">UPDATE</code> without <code class="literal">RETURNING</code>, or <code class="command">DROP TABLE</code>. But it is OK to use these methods on a result set containing zero rows. </p></dd><dt><span class="term"><code class="literal"><code class="function">__str__</code>()</code></span></dt><dd><p> The standard <code class="literal">__str__</code> method is defined so that it is possible for example to debug query execution results using <code class="literal">plpy.debug(rv)</code>. </p></dd></dl></div><p> </p><p> The result object can be modified. </p><p> Note that calling <code class="literal">plpy.execute</code> will cause the entire result set to be read into memory. Only use that function when you are sure that the result set will be relatively small. If you don't want to risk excessive memory usage when fetching large results, use <code class="literal">plpy.cursor</code> rather than <code class="literal">plpy.execute</code>. </p></dd><dt><span class="term"><code class="literal">plpy.<code class="function">prepare</code>(<em class="replaceable"><code>query</code></em> [, <em class="replaceable"><code>argtypes</code></em>])</code><br /></span><span class="term"><code class="literal">plpy.<code class="function">execute</code>(<em class="replaceable"><code>plan</code></em> [, <em class="replaceable"><code>arguments</code></em> [, <em class="replaceable"><code>limit</code></em>]])</code></span></dt><dd><p> <a id="id-1.8.11.14.3.3.2.3.1.1" class="indexterm"></a> <code class="function">plpy.prepare</code> prepares the execution plan for a query. It is called with a query string and a list of parameter types, if you have parameter references in the query. For example: </p><pre class="programlisting"> plan = plpy.prepare("SELECT last_name FROM my_users WHERE first_name = $1", ["text"]) </pre><p> <code class="literal">text</code> is the type of the variable you will be passing for <code class="literal">$1</code>. The second argument is optional if you don't want to pass any parameters to the query. </p><p> After preparing a statement, you use a variant of the function <code class="function">plpy.execute</code> to run it: </p><pre class="programlisting"> rv = plpy.execute(plan, ["name"], 5) </pre><p> Pass the plan as the first argument (instead of the query string), and a list of values to substitute into the query as the second argument. The second argument is optional if the query does not expect any parameters. The third argument is the optional row limit as before. </p><p> Alternatively, you can call the <code class="function">execute</code> method on the plan object: </p><pre class="programlisting"> rv = plan.execute(["name"], 5) </pre><p> </p><p> Query parameters and result row fields are converted between PostgreSQL and Python data types as described in <a class="xref" href="plpython-data.html" title="46.2. Data Values">Section 46.2</a>. </p><p> When you prepare a plan using the PL/Python module it is automatically saved. Read the SPI documentation (<a class="xref" href="spi.html" title="Chapter 47. Server Programming Interface">Chapter 47</a>) for a description of what this means. In order to make effective use of this across function calls one needs to use one of the persistent storage dictionaries <code class="literal">SD</code> or <code class="literal">GD</code> (see <a class="xref" href="plpython-sharing.html" title="46.3. Sharing Data">Section 46.3</a>). For example: </p><pre class="programlisting"> CREATE FUNCTION usesavedplan() RETURNS trigger AS $$ if "plan" in SD: plan = SD["plan"] else: plan = plpy.prepare("SELECT 1") SD["plan"] = plan # rest of function $$ LANGUAGE plpython3u; </pre><p> </p></dd><dt><span class="term"><code class="literal">plpy.<code class="function">cursor</code>(<em class="replaceable"><code>query</code></em>)</code><br /></span><span class="term"><code class="literal">plpy.<code class="function">cursor</code>(<em class="replaceable"><code>plan</code></em> [, <em class="replaceable"><code>arguments</code></em>])</code></span></dt><dd><p> The <code class="literal">plpy.cursor</code> function accepts the same arguments as <code class="literal">plpy.execute</code> (except for the row limit) and returns a cursor object, which allows you to process large result sets in smaller chunks. As with <code class="literal">plpy.execute</code>, either a query string or a plan object along with a list of arguments can be used, or the <code class="function">cursor</code> function can be called as a method of the plan object. </p><p> The cursor object provides a <code class="literal">fetch</code> method that accepts an integer parameter and returns a result object. Each time you call <code class="literal">fetch</code>, the returned object will contain the next batch of rows, never larger than the parameter value. Once all rows are exhausted, <code class="literal">fetch</code> starts returning an empty result object. Cursor objects also provide an <a class="ulink" href="https://docs.python.org/library/stdtypes.html#iterator-types" target="_top">iterator interface</a>, yielding one row at a time until all rows are exhausted. Data fetched that way is not returned as result objects, but rather as dictionaries, each dictionary corresponding to a single result row. </p><p> An example of two ways of processing data from a large table is: </p><pre class="programlisting"> CREATE FUNCTION count_odd_iterator() RETURNS integer AS $$ odd = 0 for row in plpy.cursor("select num from largetable"): if row['num'] % 2: odd += 1 return odd $$ LANGUAGE plpython3u; CREATE FUNCTION count_odd_fetch(batch_size integer) RETURNS integer AS $$ odd = 0 cursor = plpy.cursor("select num from largetable") while True: rows = cursor.fetch(batch_size) if not rows: break for row in rows: if row['num'] % 2: odd += 1 return odd $$ LANGUAGE plpython3u; CREATE FUNCTION count_odd_prepared() RETURNS integer AS $$ odd = 0 plan = plpy.prepare("select num from largetable where num % $1 <> 0", ["integer"]) rows = list(plpy.cursor(plan, [2])) # or: = list(plan.cursor([2])) return len(rows) $$ LANGUAGE plpython3u; </pre><p> </p><p> Cursors are automatically disposed of. But if you want to explicitly release all resources held by a cursor, use the <code class="literal">close</code> method. Once closed, a cursor cannot be fetched from anymore. </p><div class="tip"><h3 class="title">Tip</h3><p> Do not confuse objects created by <code class="literal">plpy.cursor</code> with DB-API cursors as defined by the <a class="ulink" href="https://www.python.org/dev/peps/pep-0249/" target="_top">Python Database API specification</a>. They don't have anything in common except for the name. </p></div></dd></dl></div></div><div class="sect2" id="PLPYTHON-TRAPPING"><div class="titlepage"><div><div><h3 class="title">46.6.2. Trapping Errors <a href="#PLPYTHON-TRAPPING" class="id_link">#</a></h3></div></div></div><p> Functions accessing the database might encounter errors, which will cause them to abort and raise an exception. Both <code class="function">plpy.execute</code> and <code class="function">plpy.prepare</code> can raise an instance of a subclass of <code class="literal">plpy.SPIError</code>, which by default will terminate the function. This error can be handled just like any other Python exception, by using the <code class="literal">try/except</code> construct. For example: </p><pre class="programlisting"> CREATE FUNCTION try_adding_joe() RETURNS text AS $$ try: plpy.execute("INSERT INTO users(username) VALUES ('joe')") except plpy.SPIError: return "something went wrong" else: return "Joe added" $$ LANGUAGE plpython3u; </pre><p> </p><p> The actual class of the exception being raised corresponds to the specific condition that caused the error. Refer to <a class="xref" href="errcodes-appendix.html#ERRCODES-TABLE" title="Table A.1. PostgreSQL Error Codes">Table A.1</a> for a list of possible conditions. The module <code class="literal">plpy.spiexceptions</code> defines an exception class for each <span class="productname">PostgreSQL</span> condition, deriving their names from the condition name. For instance, <code class="literal">division_by_zero</code> becomes <code class="literal">DivisionByZero</code>, <code class="literal">unique_violation</code> becomes <code class="literal">UniqueViolation</code>, <code class="literal">fdw_error</code> becomes <code class="literal">FdwError</code>, and so on. Each of these exception classes inherits from <code class="literal">SPIError</code>. This separation makes it easier to handle specific errors, for instance: </p><pre class="programlisting"> CREATE FUNCTION insert_fraction(numerator int, denominator int) RETURNS text AS $$ from plpy import spiexceptions try: plan = plpy.prepare("INSERT INTO fractions (frac) VALUES ($1 / $2)", ["int", "int"]) plpy.execute(plan, [numerator, denominator]) except spiexceptions.DivisionByZero: return "denominator cannot equal zero" except spiexceptions.UniqueViolation: return "already have that fraction" except plpy.SPIError as e: return "other error, SQLSTATE %s" % e.sqlstate else: return "fraction inserted" $$ LANGUAGE plpython3u; </pre><p> Note that because all exceptions from the <code class="literal">plpy.spiexceptions</code> module inherit from <code class="literal">SPIError</code>, an <code class="literal">except</code> clause handling it will catch any database access error. </p><p> As an alternative way of handling different error conditions, you can catch the <code class="literal">SPIError</code> exception and determine the specific error condition inside the <code class="literal">except</code> block by looking at the <code class="literal">sqlstate</code> attribute of the exception object. This attribute is a string value containing the <span class="quote">“<span class="quote">SQLSTATE</span>”</span> error code. This approach provides approximately the same functionality </p></div></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="plpython-trigger.html" title="46.5. Trigger Functions">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="plpython.html" title="Chapter 46. PL/Python — Python Procedural Language">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="plpython-subtransaction.html" title="46.7. Explicit Subtransactions">Next</a></td></tr><tr><td width="40%" align="left" valign="top">46.5. Trigger Functions </td><td width="20%" align="center"><a accesskey="h" href="index.html" title="PostgreSQL 16.3 Documentation">Home</a></td><td width="40%" align="right" valign="top"> 46.7. Explicit Subtransactions</td></tr></table></div></body></html>