????
Current Path : C:/opt/pgsql/doc/postgresql/html/ |
Current File : C:/opt/pgsql/doc/postgresql/html/textsearch-features.html |
<?xml version="1.0" encoding="UTF-8" standalone="no"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>12.4. Additional Features</title><link rel="stylesheet" type="text/css" href="stylesheet.css" /><link rev="made" href="pgsql-docs@lists.postgresql.org" /><meta name="generator" content="DocBook XSL Stylesheets Vsnapshot" /><link rel="prev" href="textsearch-controls.html" title="12.3. Controlling Text Search" /><link rel="next" href="textsearch-parsers.html" title="12.5. Parsers" /></head><body id="docContent" class="container-fluid col-10"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="5" align="center">12.4. Additional Features</th></tr><tr><td width="10%" align="left"><a accesskey="p" href="textsearch-controls.html" title="12.3. Controlling Text Search">Prev</a> </td><td width="10%" align="left"><a accesskey="u" href="textsearch.html" title="Chapter 12. Full Text Search">Up</a></td><th width="60%" align="center">Chapter 12. Full Text Search</th><td width="10%" align="right"><a accesskey="h" href="index.html" title="PostgreSQL 16.3 Documentation">Home</a></td><td width="10%" align="right"> <a accesskey="n" href="textsearch-parsers.html" title="12.5. Parsers">Next</a></td></tr></table><hr /></div><div class="sect1" id="TEXTSEARCH-FEATURES"><div class="titlepage"><div><div><h2 class="title" style="clear: both">12.4. Additional Features <a href="#TEXTSEARCH-FEATURES" class="id_link">#</a></h2></div></div></div><div class="toc"><dl class="toc"><dt><span class="sect2"><a href="textsearch-features.html#TEXTSEARCH-MANIPULATE-TSVECTOR">12.4.1. Manipulating Documents</a></span></dt><dt><span class="sect2"><a href="textsearch-features.html#TEXTSEARCH-MANIPULATE-TSQUERY">12.4.2. Manipulating Queries</a></span></dt><dt><span class="sect2"><a href="textsearch-features.html#TEXTSEARCH-UPDATE-TRIGGERS">12.4.3. Triggers for Automatic Updates</a></span></dt><dt><span class="sect2"><a href="textsearch-features.html#TEXTSEARCH-STATISTICS">12.4.4. Gathering Document Statistics</a></span></dt></dl></div><p> This section describes additional functions and operators that are useful in connection with text search. </p><div class="sect2" id="TEXTSEARCH-MANIPULATE-TSVECTOR"><div class="titlepage"><div><div><h3 class="title">12.4.1. Manipulating Documents <a href="#TEXTSEARCH-MANIPULATE-TSVECTOR" class="id_link">#</a></h3></div></div></div><p> <a class="xref" href="textsearch-controls.html#TEXTSEARCH-PARSING-DOCUMENTS" title="12.3.1. Parsing Documents">Section 12.3.1</a> showed how raw textual documents can be converted into <code class="type">tsvector</code> values. <span class="productname">PostgreSQL</span> also provides functions and operators that can be used to manipulate documents that are already in <code class="type">tsvector</code> form. </p><div class="variablelist"><dl class="variablelist"><dt><span class="term"> <a id="id-1.5.11.7.3.3.1.1.1" class="indexterm"></a> <code class="literal"><code class="type">tsvector</code> || <code class="type">tsvector</code></code> </span></dt><dd><p> The <code class="type">tsvector</code> concatenation operator returns a vector which combines the lexemes and positional information of the two vectors given as arguments. Positions and weight labels are retained during the concatenation. Positions appearing in the right-hand vector are offset by the largest position mentioned in the left-hand vector, so that the result is nearly equivalent to the result of performing <code class="function">to_tsvector</code> on the concatenation of the two original document strings. (The equivalence is not exact, because any stop-words removed from the end of the left-hand argument will not affect the result, whereas they would have affected the positions of the lexemes in the right-hand argument if textual concatenation were used.) </p><p> One advantage of using concatenation in the vector form, rather than concatenating text before applying <code class="function">to_tsvector</code>, is that you can use different configurations to parse different sections of the document. Also, because the <code class="function">setweight</code> function marks all lexemes of the given vector the same way, it is necessary to parse the text and do <code class="function">setweight</code> before concatenating if you want to label different parts of the document with different weights. </p></dd><dt><span class="term"> <a id="id-1.5.11.7.3.3.2.1.1" class="indexterm"></a> <code class="literal">setweight(<em class="replaceable"><code>vector</code></em> <code class="type">tsvector</code>, <em class="replaceable"><code>weight</code></em> <code class="type">"char"</code>) returns <code class="type">tsvector</code></code> </span></dt><dd><p> <code class="function">setweight</code> returns a copy of the input vector in which every position has been labeled with the given <em class="replaceable"><code>weight</code></em>, either <code class="literal">A</code>, <code class="literal">B</code>, <code class="literal">C</code>, or <code class="literal">D</code>. (<code class="literal">D</code> is the default for new vectors and as such is not displayed on output.) These labels are retained when vectors are concatenated, allowing words from different parts of a document to be weighted differently by ranking functions. </p><p> Note that weight labels apply to <span class="emphasis"><em>positions</em></span>, not <span class="emphasis"><em>lexemes</em></span>. If the input vector has been stripped of positions then <code class="function">setweight</code> does nothing. </p></dd><dt><span class="term"> <a id="id-1.5.11.7.3.3.3.1.1" class="indexterm"></a> <code class="literal">length(<em class="replaceable"><code>vector</code></em> <code class="type">tsvector</code>) returns <code class="type">integer</code></code> </span></dt><dd><p> Returns the number of lexemes stored in the vector. </p></dd><dt><span class="term"> <a id="id-1.5.11.7.3.3.4.1.1" class="indexterm"></a> <code class="literal">strip(<em class="replaceable"><code>vector</code></em> <code class="type">tsvector</code>) returns <code class="type">tsvector</code></code> </span></dt><dd><p> Returns a vector that lists the same lexemes as the given vector, but lacks any position or weight information. The result is usually much smaller than an unstripped vector, but it is also less useful. Relevance ranking does not work as well on stripped vectors as unstripped ones. Also, the <code class="literal"><-></code> (FOLLOWED BY) <code class="type">tsquery</code> operator will never match stripped input, since it cannot determine the distance between lexeme occurrences. </p></dd></dl></div><p> A full list of <code class="type">tsvector</code>-related functions is available in <a class="xref" href="functions-textsearch.html#TEXTSEARCH-FUNCTIONS-TABLE" title="Table 9.43. Text Search Functions">Table 9.43</a>. </p></div><div class="sect2" id="TEXTSEARCH-MANIPULATE-TSQUERY"><div class="titlepage"><div><div><h3 class="title">12.4.2. Manipulating Queries <a href="#TEXTSEARCH-MANIPULATE-TSQUERY" class="id_link">#</a></h3></div></div></div><p> <a class="xref" href="textsearch-controls.html#TEXTSEARCH-PARSING-QUERIES" title="12.3.2. Parsing Queries">Section 12.3.2</a> showed how raw textual queries can be converted into <code class="type">tsquery</code> values. <span class="productname">PostgreSQL</span> also provides functions and operators that can be used to manipulate queries that are already in <code class="type">tsquery</code> form. </p><div class="variablelist"><dl class="variablelist"><dt><span class="term"> <code class="literal"><code class="type">tsquery</code> && <code class="type">tsquery</code></code> </span></dt><dd><p> Returns the AND-combination of the two given queries. </p></dd><dt><span class="term"> <code class="literal"><code class="type">tsquery</code> || <code class="type">tsquery</code></code> </span></dt><dd><p> Returns the OR-combination of the two given queries. </p></dd><dt><span class="term"> <code class="literal">!! <code class="type">tsquery</code></code> </span></dt><dd><p> Returns the negation (NOT) of the given query. </p></dd><dt><span class="term"> <code class="literal"><code class="type">tsquery</code> <-> <code class="type">tsquery</code></code> </span></dt><dd><p> Returns a query that searches for a match to the first given query immediately followed by a match to the second given query, using the <code class="literal"><-></code> (FOLLOWED BY) <code class="type">tsquery</code> operator. For example: </p><pre class="screen"> SELECT to_tsquery('fat') <-> to_tsquery('cat | rat'); ?column? ---------------------------- 'fat' <-> ( 'cat' | 'rat' ) </pre><p> </p></dd><dt><span class="term"> <a id="id-1.5.11.7.4.3.5.1.1" class="indexterm"></a> <code class="literal">tsquery_phrase(<em class="replaceable"><code>query1</code></em> <code class="type">tsquery</code>, <em class="replaceable"><code>query2</code></em> <code class="type">tsquery</code> [, <em class="replaceable"><code>distance</code></em> <code class="type">integer</code> ]) returns <code class="type">tsquery</code></code> </span></dt><dd><p> Returns a query that searches for a match to the first given query followed by a match to the second given query at a distance of exactly <em class="replaceable"><code>distance</code></em> lexemes, using the <code class="literal"><<em class="replaceable"><code>N</code></em>></code> <code class="type">tsquery</code> operator. For example: </p><pre class="screen"> SELECT tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'), 10); tsquery_phrase ------------------ 'fat' <10> 'cat' </pre><p> </p></dd><dt><span class="term"> <a id="id-1.5.11.7.4.3.6.1.1" class="indexterm"></a> <code class="literal">numnode(<em class="replaceable"><code>query</code></em> <code class="type">tsquery</code>) returns <code class="type">integer</code></code> </span></dt><dd><p> Returns the number of nodes (lexemes plus operators) in a <code class="type">tsquery</code>. This function is useful to determine if the <em class="replaceable"><code>query</code></em> is meaningful (returns > 0), or contains only stop words (returns 0). Examples: </p><pre class="screen"> SELECT numnode(plainto_tsquery('the any')); NOTICE: query contains only stopword(s) or doesn't contain lexeme(s), ignored numnode --------- 0 SELECT numnode('foo & bar'::tsquery); numnode --------- 3 </pre><p> </p></dd><dt><span class="term"> <a id="id-1.5.11.7.4.3.7.1.1" class="indexterm"></a> <code class="literal">querytree(<em class="replaceable"><code>query</code></em> <code class="type">tsquery</code>) returns <code class="type">text</code></code> </span></dt><dd><p> Returns the portion of a <code class="type">tsquery</code> that can be used for searching an index. This function is useful for detecting unindexable queries, for example those containing only stop words or only negated terms. For example: </p><pre class="screen"> SELECT querytree(to_tsquery('defined')); querytree ----------- 'defin' SELECT querytree(to_tsquery('!defined')); querytree ----------- T </pre><p> </p></dd></dl></div><div class="sect3" id="TEXTSEARCH-QUERY-REWRITING"><div class="titlepage"><div><div><h4 class="title">12.4.2.1. Query Rewriting <a href="#TEXTSEARCH-QUERY-REWRITING" class="id_link">#</a></h4></div></div></div><a id="id-1.5.11.7.4.4.2" class="indexterm"></a><p> The <code class="function">ts_rewrite</code> family of functions search a given <code class="type">tsquery</code> for occurrences of a target subquery, and replace each occurrence with a substitute subquery. In essence this operation is a <code class="type">tsquery</code>-specific version of substring replacement. A target and substitute combination can be thought of as a <em class="firstterm">query rewrite rule</em>. A collection of such rewrite rules can be a powerful search aid. For example, you can expand the search using synonyms (e.g., <code class="literal">new york</code>, <code class="literal">big apple</code>, <code class="literal">nyc</code>, <code class="literal">gotham</code>) or narrow the search to direct the user to some hot topic. There is some overlap in functionality between this feature and thesaurus dictionaries (<a class="xref" href="textsearch-dictionaries.html#TEXTSEARCH-THESAURUS" title="12.6.4. Thesaurus Dictionary">Section 12.6.4</a>). However, you can modify a set of rewrite rules on-the-fly without reindexing, whereas updating a thesaurus requires reindexing to be effective. </p><div class="variablelist"><dl class="variablelist"><dt><span class="term"> <code class="literal">ts_rewrite (<em class="replaceable"><code>query</code></em> <code class="type">tsquery</code>, <em class="replaceable"><code>target</code></em> <code class="type">tsquery</code>, <em class="replaceable"><code>substitute</code></em> <code class="type">tsquery</code>) returns <code class="type">tsquery</code></code> </span></dt><dd><p> This form of <code class="function">ts_rewrite</code> simply applies a single rewrite rule: <em class="replaceable"><code>target</code></em> is replaced by <em class="replaceable"><code>substitute</code></em> wherever it appears in <em class="replaceable"><code>query</code></em>. For example: </p><pre class="screen"> SELECT ts_rewrite('a & b'::tsquery, 'a'::tsquery, 'c'::tsquery); ts_rewrite ------------ 'b' & 'c' </pre><p> </p></dd><dt><span class="term"> <code class="literal">ts_rewrite (<em class="replaceable"><code>query</code></em> <code class="type">tsquery</code>, <em class="replaceable"><code>select</code></em> <code class="type">text</code>) returns <code class="type">tsquery</code></code> </span></dt><dd><p> This form of <code class="function">ts_rewrite</code> accepts a starting <em class="replaceable"><code>query</code></em> and an SQL <em class="replaceable"><code>select</code></em> command, which is given as a text string. The <em class="replaceable"><code>select</code></em> must yield two columns of <code class="type">tsquery</code> type. For each row of the <em class="replaceable"><code>select</code></em> result, occurrences of the first column value (the target) are replaced by the second column value (the substitute) within the current <em class="replaceable"><code>query</code></em> value. For example: </p><pre class="screen"> CREATE TABLE aliases (t tsquery PRIMARY KEY, s tsquery); INSERT INTO aliases VALUES('a', 'c'); SELECT ts_rewrite('a & b'::tsquery, 'SELECT t,s FROM aliases'); ts_rewrite ------------ 'b' & 'c' </pre><p> </p><p> Note that when multiple rewrite rules are applied in this way, the order of application can be important; so in practice you will want the source query to <code class="literal">ORDER BY</code> some ordering key. </p></dd></dl></div><p> Let's consider a real-life astronomical example. We'll expand query <code class="literal">supernovae</code> using table-driven rewriting rules: </p><pre class="screen"> CREATE TABLE aliases (t tsquery primary key, s tsquery); INSERT INTO aliases VALUES(to_tsquery('supernovae'), to_tsquery('supernovae|sn')); SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT * FROM aliases'); ts_rewrite --------------------------------- 'crab' & ( 'supernova' | 'sn' ) </pre><p> We can change the rewriting rules just by updating the table: </p><pre class="screen"> UPDATE aliases SET s = to_tsquery('supernovae|sn & !nebulae') WHERE t = to_tsquery('supernovae'); SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT * FROM aliases'); ts_rewrite --------------------------------------------- 'crab' & ( 'supernova' | 'sn' & !'nebula' ) </pre><p> </p><p> Rewriting can be slow when there are many rewriting rules, since it checks every rule for a possible match. To filter out obvious non-candidate rules we can use the containment operators for the <code class="type">tsquery</code> type. In the example below, we select only those rules which might match the original query: </p><pre class="screen"> SELECT ts_rewrite('a & b'::tsquery, 'SELECT t,s FROM aliases WHERE ''a & b''::tsquery @> t'); ts_rewrite ------------ 'b' & 'c' </pre><p> </p></div></div><div class="sect2" id="TEXTSEARCH-UPDATE-TRIGGERS"><div class="titlepage"><div><div><h3 class="title">12.4.3. Triggers for Automatic Updates <a href="#TEXTSEARCH-UPDATE-TRIGGERS" class="id_link">#</a></h3></div></div></div><a id="id-1.5.11.7.5.2" class="indexterm"></a><div class="note"><h3 class="title">Note</h3><p> The method described in this section has been obsoleted by the use of stored generated columns, as described in <a class="xref" href="textsearch-tables.html#TEXTSEARCH-TABLES-INDEX" title="12.2.2. Creating Indexes">Section 12.2.2</a>. </p></div><p> When using a separate column to store the <code class="type">tsvector</code> representation of your documents, it is necessary to create a trigger to update the <code class="type">tsvector</code> column when the document content columns change. Two built-in trigger functions are available for this, or you can write your own. </p><pre class="synopsis"> tsvector_update_trigger(<em class="replaceable"><code>tsvector_column_name</code></em>, <em class="replaceable"><code>config_name</code></em>, <em class="replaceable"><code>text_column_name</code></em> [<span class="optional">, ... </span>]) tsvector_update_trigger_column(<em class="replaceable"><code>tsvector_column_name</code></em>, <em class="replaceable"><code>config_column_name</code></em>, <em class="replaceable"><code>text_column_name</code></em> [<span class="optional">, ... </span>]) </pre><p> These trigger functions automatically compute a <code class="type">tsvector</code> column from one or more textual columns, under the control of parameters specified in the <code class="command">CREATE TRIGGER</code> command. An example of their use is: </p><pre class="screen"> CREATE TABLE messages ( title text, body text, tsv tsvector ); CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE ON messages FOR EACH ROW EXECUTE FUNCTION tsvector_update_trigger(tsv, 'pg_catalog.english', title, body); INSERT INTO messages VALUES('title here', 'the body text is here'); SELECT * FROM messages; title | body | tsv ------------+-----------------------+---------------------------- title here | the body text is here | 'bodi':4 'text':5 'titl':1 SELECT title, body FROM messages WHERE tsv @@ to_tsquery('title & body'); title | body ------------+----------------------- title here | the body text is here </pre><p> Having created this trigger, any change in <code class="structfield">title</code> or <code class="structfield">body</code> will automatically be reflected into <code class="structfield">tsv</code>, without the application having to worry about it. </p><p> The first trigger argument must be the name of the <code class="type">tsvector</code> column to be updated. The second argument specifies the text search configuration to be used to perform the conversion. For <code class="function">tsvector_update_trigger</code>, the configuration name is simply given as the second trigger argument. It must be schema-qualified as shown above, so that the trigger behavior will not change with changes in <code class="varname">search_path</code>. For <code class="function">tsvector_update_trigger_column</code>, the second trigger argument is the name of another table column, which must be of type <code class="type">regconfig</code>. This allows a per-row selection of configuration to be made. The remaining argument(s) are the names of textual columns (of type <code class="type">text</code>, <code class="type">varchar</code>, or <code class="type">char</code>). These will be included in the document in the order given. NULL values will be skipped (but the other columns will still be indexed). </p><p> A limitation of these built-in triggers is that they treat all the input columns alike. To process columns differently — for example, to weight title differently from body — it is necessary to write a custom trigger. Here is an example using <span class="application">PL/pgSQL</span> as the trigger language: </p><pre class="programlisting"> CREATE FUNCTION messages_trigger() RETURNS trigger AS $$ begin new.tsv := setweight(to_tsvector('pg_catalog.english', coalesce(new.title,'')), 'A') || setweight(to_tsvector('pg_catalog.english', coalesce(new.body,'')), 'D'); return new; end $$ LANGUAGE plpgsql; CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE ON messages FOR EACH ROW EXECUTE FUNCTION messages_trigger(); </pre><p> </p><p> Keep in mind that it is important to specify the configuration name explicitly when creating <code class="type">tsvector</code> values inside triggers, so that the column's contents will not be affected by changes to <code class="varname">default_text_search_config</code>. Failure to do this is likely to lead to problems such as search results changing after a dump and restore. </p></div><div class="sect2" id="TEXTSEARCH-STATISTICS"><div class="titlepage"><div><div><h3 class="title">12.4.4. Gathering Document Statistics <a href="#TEXTSEARCH-STATISTICS" class="id_link">#</a></h3></div></div></div><a id="id-1.5.11.7.6.2" class="indexterm"></a><p> The function <code class="function">ts_stat</code> is useful for checking your configuration and for finding stop-word candidates. </p><pre class="synopsis"> ts_stat(<em class="replaceable"><code>sqlquery</code></em> <code class="type">text</code>, [<span class="optional"> <em class="replaceable"><code>weights</code></em> <code class="type">text</code>, </span>] OUT <em class="replaceable"><code>word</code></em> <code class="type">text</code>, OUT <em class="replaceable"><code>ndoc</code></em> <code class="type">integer</code>, OUT <em class="replaceable"><code>nentry</code></em> <code class="type">integer</code>) returns <code class="type">setof record</code> </pre><p> <em class="replaceable"><code>sqlquery</code></em> is a text value containing an SQL query which must return a single <code class="type">tsvector</code> column. <code class="function">ts_stat</code> executes the query and returns statistics about each distinct lexeme (word) contained in the <code class="type">tsvector</code> data. The columns returned are </p><div class="itemizedlist"><ul class="itemizedlist compact" style="list-style-type: bullet; "><li class="listitem" style="list-style-type: disc"><p> <em class="replaceable"><code>word</code></em> <code class="type">text</code> — the value of a lexeme </p></li><li class="listitem" style="list-style-type: disc"><p> <em class="replaceable"><code>ndoc</code></em> <code class="type">integer</code> — number of documents (<code class="type">tsvector</code>s) the word occurred in </p></li><li class="listitem" style="list-style-type: disc"><p> <em class="replaceable"><code>nentry</code></em> <code class="type">integer</code> — total number of occurrences of the word </p></li></ul></div><p> If <em class="replaceable"><code>weights</code></em> is supplied, only occurrences having one of those weights are counted. </p><p> For example, to find the ten most frequent words in a document collection: </p><pre class="programlisting"> SELECT * FROM ts_stat('SELECT vector FROM apod') ORDER BY nentry DESC, ndoc DESC, word LIMIT 10; </pre><p> The same, but counting only word occurrences with weight <code class="literal">A</code> or <code class="literal">B</code>: </p><pre class="programlisting"> SELECT * FROM ts_stat('SELECT vector FROM apod', 'ab') ORDER BY nentry DESC, ndoc DESC, word LIMIT 10; </pre><p> </p></div></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="textsearch-controls.html" title="12.3. Controlling Text Search">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="textsearch.html" title="Chapter 12. Full Text Search">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="textsearch-parsers.html" title="12.5. Parsers">Next</a></td></tr><tr><td width="40%" align="left" valign="top">12.3. Controlling Text Search </td><td width="20%" align="center"><a accesskey="h" href="index.html" title="PostgreSQL 16.3 Documentation">Home</a></td><td width="40%" align="right" valign="top"> 12.5. Parsers</td></tr></table></div></body></html>