????
Current Path : C:/opt/pgsql/doc/postgresql/html/ |
Current File : C:/opt/pgsql/doc/postgresql/html/textsearch-indexes.html |
<?xml version="1.0" encoding="UTF-8" standalone="no"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>12.9. Preferred Index Types for Text Search</title><link rel="stylesheet" type="text/css" href="stylesheet.css" /><link rev="made" href="pgsql-docs@lists.postgresql.org" /><meta name="generator" content="DocBook XSL Stylesheets Vsnapshot" /><link rel="prev" href="textsearch-debugging.html" title="12.8. Testing and Debugging Text Search" /><link rel="next" href="textsearch-psql.html" title="12.10. psql Support" /></head><body id="docContent" class="container-fluid col-10"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="5" align="center">12.9. Preferred Index Types for Text Search</th></tr><tr><td width="10%" align="left"><a accesskey="p" href="textsearch-debugging.html" title="12.8. Testing and Debugging Text Search">Prev</a> </td><td width="10%" align="left"><a accesskey="u" href="textsearch.html" title="Chapter 12. Full Text Search">Up</a></td><th width="60%" align="center">Chapter 12. Full Text Search</th><td width="10%" align="right"><a accesskey="h" href="index.html" title="PostgreSQL 16.3 Documentation">Home</a></td><td width="10%" align="right"> <a accesskey="n" href="textsearch-psql.html" title="12.10. psql Support">Next</a></td></tr></table><hr /></div><div class="sect1" id="TEXTSEARCH-INDEXES"><div class="titlepage"><div><div><h2 class="title" style="clear: both">12.9. Preferred Index Types for Text Search <a href="#TEXTSEARCH-INDEXES" class="id_link">#</a></h2></div></div></div><a id="id-1.5.11.12.2" class="indexterm"></a><p> There are two kinds of indexes that can be used to speed up full text searches: <a class="link" href="gin.html" title="Chapter 70. GIN Indexes"><acronym class="acronym">GIN</acronym></a> and <a class="link" href="gist.html" title="Chapter 68. GiST Indexes"><acronym class="acronym">GiST</acronym></a>. Note that indexes are not mandatory for full text searching, but in cases where a column is searched on a regular basis, an index is usually desirable. </p><p> To create such an index, do one of: </p><div class="variablelist"><dl class="variablelist"><dt><span class="term"> <a id="id-1.5.11.12.4.1.1.1.1" class="indexterm"></a> <code class="literal">CREATE INDEX <em class="replaceable"><code>name</code></em> ON <em class="replaceable"><code>table</code></em> USING GIN (<em class="replaceable"><code>column</code></em>);</code> </span></dt><dd><p> Creates a GIN (Generalized Inverted Index)-based index. The <em class="replaceable"><code>column</code></em> must be of <code class="type">tsvector</code> type. </p></dd><dt><span class="term"> <a id="id-1.5.11.12.4.1.2.1.1" class="indexterm"></a> <code class="literal">CREATE INDEX <em class="replaceable"><code>name</code></em> ON <em class="replaceable"><code>table</code></em> USING GIST (<em class="replaceable"><code>column</code></em> [ { DEFAULT | tsvector_ops } (siglen = <em class="replaceable"><code>number</code></em>) ] );</code> </span></dt><dd><p> Creates a GiST (Generalized Search Tree)-based index. The <em class="replaceable"><code>column</code></em> can be of <code class="type">tsvector</code> or <code class="type">tsquery</code> type. Optional integer parameter <code class="literal">siglen</code> determines signature length in bytes (see below for details). </p></dd></dl></div><p> </p><p> GIN indexes are the preferred text search index type. As inverted indexes, they contain an index entry for each word (lexeme), with a compressed list of matching locations. Multi-word searches can find the first match, then use the index to remove rows that are lacking additional words. GIN indexes store only the words (lexemes) of <code class="type">tsvector</code> values, and not their weight labels. Thus a table row recheck is needed when using a query that involves weights. </p><p> A GiST index is <em class="firstterm">lossy</em>, meaning that the index might produce false matches, and it is necessary to check the actual table row to eliminate such false matches. (<span class="productname">PostgreSQL</span> does this automatically when needed.) GiST indexes are lossy because each document is represented in the index by a fixed-length signature. The signature length in bytes is determined by the value of the optional integer parameter <code class="literal">siglen</code>. The default signature length (when <code class="literal">siglen</code> is not specified) is 124 bytes, the maximum signature length is 2024 bytes. The signature is generated by hashing each word into a single bit in an n-bit string, with all these bits OR-ed together to produce an n-bit document signature. When two words hash to the same bit position there will be a false match. If all words in the query have matches (real or false) then the table row must be retrieved to see if the match is correct. Longer signatures lead to a more precise search (scanning a smaller fraction of the index and fewer heap pages), at the cost of a larger index. </p><p> A GiST index can be covering, i.e., use the <code class="literal">INCLUDE</code> clause. Included columns can have data types without any GiST operator class. Included attributes will be stored uncompressed. </p><p> Lossiness causes performance degradation due to unnecessary fetches of table records that turn out to be false matches. Since random access to table records is slow, this limits the usefulness of GiST indexes. The likelihood of false matches depends on several factors, in particular the number of unique words, so using dictionaries to reduce this number is recommended. </p><p> Note that <acronym class="acronym">GIN</acronym> index build time can often be improved by increasing <a class="xref" href="runtime-config-resource.html#GUC-MAINTENANCE-WORK-MEM">maintenance_work_mem</a>, while <acronym class="acronym">GiST</acronym> index build time is not sensitive to that parameter. </p><p> Partitioning of big collections and the proper use of GIN and GiST indexes allows the implementation of very fast searches with online update. Partitioning can be done at the database level using table inheritance, or by distributing documents over servers and collecting external search results, e.g., via <a class="link" href="ddl-foreign-data.html" title="5.12. Foreign Data">Foreign Data</a> access. The latter is possible because ranking functions use only local information. </p></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="textsearch-debugging.html" title="12.8. Testing and Debugging Text Search">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="textsearch.html" title="Chapter 12. Full Text Search">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="textsearch-psql.html" title="12.10. psql Support">Next</a></td></tr><tr><td width="40%" align="left" valign="top">12.8. Testing and Debugging Text Search </td><td width="20%" align="center"><a accesskey="h" href="index.html" title="PostgreSQL 16.3 Documentation">Home</a></td><td width="40%" align="right" valign="top"> 12.10. <span class="application">psql</span> Support</td></tr></table></div></body></html>